首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, two novel effective strategies composed of Lévy flight and chaotic local search are synchronously introduced into the whale optimization algorithm (WOA) to guide the swarm and further promote the harmony between the inclusive exploratory and neighborhood-informed capacities of the conventional technique and investigate the core searching capabilities of WOA in dealing with optimization tasks. However, the conventional WOA may simply be stuck at local optima or the global best may not be obtained successfully when tackling more complex optimization landscapes, including the multimodal and high dimensional scenarios. To substantiate the efficacy of the enhanced method, it is compared to a set of well-regarded variants of particle swarm optimization and differential evolution. The used benchmark problems are composed of unimodal, multimodal, and fixed-dimensions multimodal functions. Additionally, the proposed balanced method is applied to realize three practical, well-known mathematical models such as tension/compression spring, welded beam, pressure vessel design, three-bar truss design, and I-beam design problems. The experimental results and analysis reveal that the proposed algorithm can outperform other competitors in terms of the convergence speed and the quality of solutions. Promisingly, the proposed method can be treated as an effective and efficient auxiliary tool for more complex optimization models and scenarios.  相似文献   

2.
Particle swarm optimization (PSO) is characterized by a fast convergence, which can lead the algorithms of this class to stagnate in local optima. In this paper, a variant of the standard PSO algorithm is presented, called PSO-2S, based on several initializations in different zones of the search space, using charged particles. This algorithm uses two kinds of swarms, a main one that gathers the best particles of auxiliary ones, initialized several times. The auxiliary swarms are initialized in different areas, then an electrostatic repulsion heuristic is applied in each area to increase its diversity. We analyse the performance of the proposed approach on a testbed made of unimodal and multimodal test functions with and without coordinate rotation and shift. The Lennard-Jones potential problem is also used. The proposed algorithm is compared to several other PSO algorithms on this benchmark. The obtained results show the efficiency of the proposed algorithm.  相似文献   

3.
The particle swarm optimization (PSO) computational method has recently become popular. However, it has limitations. It may trap into local optima and cause the premature convergence phenomenon, especially for multimodal and high-dimensional problems. In this paper, we focus on investigating the fitness evaluation in terms of a particle’s position. Particularly, we find that the fitness evaluation strategy in the standard PSO has two drawbacks, i.e., “two steps forward and one step back” and “two steps back and one step forward”. In addition, we propose a general fitness evaluation strategy (GFES), by which a particle is evaluated in multiple subspaces and different contexts in order to take diverse paces towards the destination position. As demonstrations of GFES, a series of PSOs with GFES are presented. Experiments are conducted on several benchmark optimization problems. The results show that GFES is effective at handling multimodal and high-dimensional problems.  相似文献   

4.
This paper proposes particle swarm optimization with age-group topology (PSOAG), a novel age-based particle swarm optimization (PSO). In this work, we present a new concept of age to measure the search ability of each particle in local area. To keep population diversity during searching, we separate particles to different age-groups by their age and particles in each age-group can only select the ones in younger groups or their own groups as their neighbourhoods. To allow search escape from local optima, the aging particles are regularly replaced by new and randomly generated ones. In addition, we design an age-group based parameter setting method, where particles in different age-groups have different parameters, to accelerate convergence. This algorithm is applied to nonlinear function optimization and data clustering problems for performance evaluation. In comparison against several PSO variants and other EAs, we find that the proposed algorithm provides significantly better performances on both the function optimization problems and the data clustering tasks.  相似文献   

5.
In this paper, a novel memetic algorithm (MA) named GS-MPSO is proposed by combining a particle swarm optimization (PSO) with a Gaussian mutation operator and a Simulated Annealing (SA)-based local search operator. In GS-MPSO, the particles are organized as a ring lattice. The Gaussian mutation operator is applied to the stagnant particles to prevent GS-MPSO trapping into local optima. The SA-based local search strategy is developed to combine with the cognition-only PSO model and perform a fine-grained local search around the promising regions. The experimental results show that GS-MPSO is superior to some other variants of PSO with better performance on optimizing the benchmark functions when the computing resource is limited. Data clustering is studied as a real case study to further demonstrate its optimization ability and usability, too.  相似文献   

6.
Metaheuristic optimization algorithms have become popular choice for solving complex and intricate problems which are otherwise difficult to solve by traditional methods. In the present study an attempt is made to review the hybrid optimization techniques in which one main algorithm is a well known metaheuristic; particle swarm optimization or PSO. Hybridization is a method of combining two (or more) techniques in a judicious manner such that the resulting algorithm contains the positive features of both (or all) the algorithms. Depending on the algorithm/s used we made three classifications as (i) Hybridization of PSO and genetic algorithms (ii) Hybridization of PSO with differential evolution and (iii) Hybridization of PSO with other techniques. Where, other techniques include various local and global search methods. Besides giving the review we also show a comparison of three hybrid PSO algorithms; hybrid differential evolution particle swarm optimization (DE-PSO), adaptive mutation particle swarm optimization (AMPSO) and hybrid genetic algorithm particle swarm optimization (GA-PSO) on a test suite of nine conventional benchmark problems.  相似文献   

7.
Parametric optimization of flexible satellite controller is an essential for almost all modern satellites. Particle swarm algorithm is a global optimization algorithm but it suffers from two major shortcomings, that of, premature convergence and low searching accuracy. To solve these problems, this paper proposes an improved particle swarm optimization (IPSO) which substitute “poorly-fitted-particles” with a cross operation. Based on decision possibility, the cross operation can interchange local optima between three particles. Thereafter the swarm is split in two halves, and random number (s) get generated by crossing the dimension of particle from both halves. This produces a new swarm. Now the new swarm and old swarm are mixed, and based on relative fitness a half of the particles are selected for the next generation. As a result of the cross operation, IPSO can easily jump out of local optima, has improved searching accuracy and accelerates the convergence speed. Some test functions with different dimensions are used to analyze the performance of IPSO algorithm. Simulation results show that the IPSO has more advantages than standard PSO and Genetic Algorithm PSO (GAPSO). In that it has a more stable performance and lower level of complexity. Thus the IPSO is applied for parametric optimization of flexible satellite control, for a satellite having solar wings and antennae. Simulation results shows that the IPSO can effectively get the best controller parameters vis-a-vis the other optimization methods.  相似文献   

8.
Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The aim of this paper is to introduce a hybrid approach combining two heuristic optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA). Our approach integrates the merits of both GA and PSO and it has two characteristic features. Firstly, the algorithm is initialized by a set of random particles which travel through the search space. During this travel an evolution of these particles is performed by integrating PSO and GA. Secondly, to restrict velocity of the particles and control it, we introduce a modified constriction factor. Finally, the results of various experimental studies using a suite of multimodal test functions taken from the literature have demonstrated the superiority of the proposed approach to finding the global optimal solution.  相似文献   

9.
The conceptual design of aircraft often entails a large number of nonlinear constraints that result in a nonconvex feasible design space and multiple local optima. The design of the high-speed civil transport (HSCT) is used as an example of a highly complex conceptual design with 26 design variables and 68 constraints. This paper compares three global optimization techniques on the HSCT problem and two test problems containing thousands of local optima and noise: multistart local optimizations using either sequential quadratic programming (SQP) as implemented in the design optimization tools (DOT) program or Snyman's dynamic search method, and a modified form of Jones' DIRECT global optimization algorithm. SQP is a local optimizer, while Snyman's algorithm is capable of moving through shallow local minima. The modified DIRECT algorithm is a global search method based on Lipschitzian optimization that locates small promising regions of design space and then uses a local optimizer to converge to the optimum. DOT and the dynamic search algorithms proved to be superior for finding a single optimum masked by noise of trigonometric form. The modified DIRECT algorithm was found to be better for locating the global optimum of functions with many widely separated true local optima.  相似文献   

10.
In the current research chaotic search is used with the optimization technique for solving non-linear complicated power system problems because Chaos can overcome the local optima problem of optimization technique. Power system problem, more specifically voltage stability, is one of the practical examples of non-linear, complex, convex problems. Smart grid, restructured energy system and socio-economic development fetch various uncertain events in power systems and the level of uncertainty increases to a great extent day by day. In this context, analysis of voltage stability is essential. The efficient method to assess the voltage stability is maximum loadability limit (MLL). MLL problem is formulated as a maximization problem considering practical security constraints (SCs). Detection of weak buses is also important for the analysis of power system stability. Both MLL and weak buses are identified by PSO methods and FACTS devices can be applied to the detected weak buses for the improvement of stability. Three particle swarm optimization (PSO) techniques namely General PSO (GPSO), Adaptive PSO (APSO) and Chaotic PSO (CPSO) are presented for the comparative study with obtaining MLL and weak buses under different SCs. In APSO method, PSO-parameters are made adaptive with the problem and chaos is incorporated in CPSO method to obtain reliable convergence and better performances. All three methods are applied on standard IEEE 14 bus, 30 bus, 57 bus and 118 bus test systems to show their comparative computing effectiveness and optimization efficiencies.  相似文献   

11.
Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.  相似文献   

12.
Brainstorm optimisation (BSO) algorithm is a recently developed swarm intelligence algorithm inspired by the human problem-solving process. BSO has been shown to be an efficient method for creating better ideas to deal with complex problems. The original BSO suffers from low convergence and is easily trapped in local optima due to the improper balance between global exploration and local exploitation. Motivated by the memetic framework, an adaptive BSO with two complementary strategies (AMBSO) is proposed in this study. In AMBSO, a differential-based mutation technique is designed for global exploration improvement and a sub-gradient strategy is integrated for local exploitation enhancement. To dynamically trigger the appropriate strategy, an adaptive selection mechanism based on historical effectiveness is developed. The proposed algorithm is tested on 30 benchmark functions with various properties, such as unimodal, multimodal, shifted and rotated problems, in dimensions of 10, 30 and 50 to verify their scalable performance. Six state-of-the-art optimisation algorithms are included for comparison. Experimental results indicate the effectiveness of AMBSO in terms of solution quality and convergence speed.  相似文献   

13.
针对基本粒子群优化算法容易陷入局部极值的缺陷,提出了一种免疫逃避型粒子群优化算法.其基本思想是将初始粒子群划分为寄生与宿主两个种群以模拟生物寄生行为,对寄生种群的粒子采用精英学习策略,对宿主群的粒子采用探索策略,再引入免疫系统的高频变异对寄生群采用相应的免疫逃避机制,以增强群体逃离局部极值、提高算法的全局寻优能力.采用标准测试函数的实验结果表明,该算法在收敛速度和求解精度方面均有显著改进.  相似文献   

14.
Many real-world optimization problems are dynamic (time dependent) and require an algorithm that is able to track continuously a changing optimum over time. In this paper, we propose a new algorithm for dynamic continuous optimization. The proposed algorithm is based on several coordinated local searches and on the archiving of the optima found by these local searches. This archive is used when the environment changes. The performance of the algorithm is analyzed on the Moving Peaks Benchmark and the Generalized Dynamic Benchmark Generator. Then, a comparison of its performance to the performance of competing dynamic optimization algorithms available in the literature is done. The obtained results show the efficiency of the proposed algorithm.  相似文献   

15.
We study local optima of combinatorial optimization problems. We show that a local search algorithm can be represented as a digraph and apply recent results for spanning forests of a diagraph. We establish a correspondence between the number of local optima and the algebraic multiplicities of eigenvalues of digraph laplacians. We apply our finding to the three-dimensional assignment problem.  相似文献   

16.
A novel hybrid evolutionary algorithm is developed based on the particle swarm optimization (PSO) and genetic algorithms (GAs). The PSO phase involves the enhancement of worst solutions by using the global-local best inertia weight and acceleration coefficients to increase the efficiency. In the genetic algorithm phase, a new rank-based multi-parent crossover is used by modifying the crossover and mutation operators which favors both the local and global exploration simultaneously. In addition, the Euclidean distance-based niching is implemented in the replacement phase of the GA to maintain the population diversity. To avoid the local optimum solutions, the stagnation check is performed and the solution is randomized when needed. The constraints are handled using an effective feasible population based approach. The parameters are self-adaptive requiring no tuning based on the type of problems. Numerical simulations are performed first to evaluate the current algorithm for a set of 24 benchmark constrained nonlinear optimization problems. The results demonstrate reasonable correlation and high quality optimum solutions with significantly less function evaluations against other state-of-the-art heuristic-based optimization algorithms. The algorithm is also applied to various nonlinear engineering optimization problems and shown to be excellent in searching for the global optimal solutions.  相似文献   

17.
In this paper, we present a novel multi-modal optimization algorithm for finding multiple local optima in objective function surfaces. We build from Species-based particle swarm optimization (SPSO) by using deterministic sampling to generate new particles during the optimization process, by implementing proximity-based speciation coupled with speciation of isolated particles, and by including “turbulence regions” around already found solutions to prevent unnecessary function evaluations. Instead of using error threshold values, the new algorithm uses the particle’s experience, geometric mean, and “exclusion factor” to detect local optima and stop the algorithm. The performance of each extension is assessed with leave-it-out tests, and the results are discussed. We use the new algorithm called Isolated-Speciation-based particle swarm optimization (ISPSO) and a benchmark algorithm called Niche particle swarm optimization (NichePSO) to solve a six-dimensional rainfall characterization problem for 192 rain gages across the United States. We show why it is important to find multiple local optima for solving this real-world complex problem by discussing its high multi-modality. Solutions found by both algorithms are compared, and we conclude that ISPSO is more reliable than NichePSO at finding optima with a significantly lower objective function value.  相似文献   

18.
一种加入创新粒子的粒子群   总被引:1,自引:0,他引:1  
粒子群算法是一种基于群体智能的随机并行算法,它在很多优化问题中都得到了比较好的应用。本文针对粒子群容易陷入局部最优解,提出了一种加入创新粒子的粒子群,实验模拟结果表明加入创新粒子的粒子群有更好的结果和收敛速度。  相似文献   

19.
Linearly constrained indefinite quadratic problems play an important role in global optimization. In this paper we study d.c. theory and its local approachto such problems. The new algorithm, CDA, efficiently produces local optima and sometimes produces global optima. We also propose a decomposition branch andbound method for globally solving these problems. Finally many numericalsimulations are reported.  相似文献   

20.
Particle swarm optimization (PSO) has gained increasing attention in tackling complex optimization problems. Its further superiority when hybridized with other search techniques is also shown. Chaos, with the properties of ergodicity and stochasticity, is definitely a good candidate, but currently only the well-known logistic map is prevalently used. In this paper, the performance and deficiencies of schemes coupling chaotic search into PSO are analyzed. Then, the piecewise linear chaotic map (PWLCM) is introduced to perform the chaotic search. An improved PSO algorithm combined with PWLCM (PWLCPSO) is proposed subsequently, and experimental results verify its great superiority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号