首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this paper, the problem of stochastic stability criterion of Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates is considered. Some new delay-dependent stability criteria are derived by choosing a new class of Lyapunov functional. The obtained criteria are less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

4.
In this paper, the problem of stochastic stabilization for a class of discrete-time singular Markovian jump systems with time-varying delay is investigated. By using the Lyapunov functional method and delay decomposition approach, improved delay-dependent sufficient conditions are presented, which guarantee the considered systems to be regular, causal and stochastically stabilizable. Finally, some numerical examples are provided to illustrate the effectiveness of the obtained methods.  相似文献   

5.
6.
This paper deals with the global exponential stability analysis of neutral systems with Markovian jumping parameters and interval time-varying delays. The time-varying delay is assumed to belong to an interval, which means that the lower and upper bounds of interval time-varying delays are available. A new global exponential stability condition is derived in terms of linear matrix inequality (LMI) by constructing new Lyapunov-Krasovskii functionals via generalized eigenvalue problems (GEVPs). The stability criteria are formulated in the form of LMIs, which can be easily checked in practice by Matlab LMI control toolbox. Two numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.  相似文献   

7.
In this paper, the problem of exponential stabilization for a class of linear systems with time-varying delay is studied. The time delay is a continuous function belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, but the delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals combined with Leibniz-Newton’s formula, new delay-dependent sufficient conditions for the exponential stabilization of the systems are first established in terms of LMIs. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.  相似文献   

8.
This paper proposes an approach for the robust stability of uncertain systems with interval time-varying delay. The key features of the approach include the introduction of uncorrelated augmented matrix items into the Lyapunov functional and the use of a tighter bounding technology. Unlike existing methodologies, the proposed approach involves neither free weighting matrices nor any model transformation. It can, however, lead to much less conservative stability criteria than the existing ones for the systems under consideration. Numerical examples show that the proposed criteria improve the existing results significantly with much less computational effort.  相似文献   

9.
This paper is concerned with the problem of asymptotic stability of neutral systems. A new delay-dependent stability condition is derived in terms of linear matrix inequality to ensure a large upper bound of the time-delay by non-uniformly dividing the delay interval into multiple segments. A new Lyapunov-Krasovskii functional is constructed with different weighting matrices corresponding to different segments in the Lyapunov-Krasovskii functional, where both constant time delays and time-varying delays have been taken into account. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.  相似文献   

10.
This paper investigates the problem of robust H filtering for uncertain stochastic time-delay systems with Markovian jump parameters. Both the state dynamics and measurement of the system are corrupted by Wiener processes. The time delay varies in an interval and depends on the mode of operation. A Markovian jump linear filter is designed to guarantee robust exponential mean-square stability and a prescribed disturbance attenuation level of the resulting filter error system. A novel approach is employed in showing the robust exponential mean-square stability. The exponential decay rate can be directly estimated using matrices of the Lyapunov-Krasovskii functional and its derivative. A delay-range-dependent condition in the form of LMIs is derived for the solvability of this H filtering problem, and the desired filter can be constructed with solutions of the LMIs. An illustrative numerical example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

11.
This paper studies the problems of global exponential stability of reaction-diffusion high-order Markovian jump Hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential stability in the mean square for the reaction-diffusion high-order neural networks are established, which are easily verifiable and have a wider adaptive. An example is also discussed to illustrate our results.  相似文献   

12.
In this paper, the problem of delay-dependent passivity analysis is studied for the singular Markov jump systems with time-varying/time-invariant delays. By use of the delay partitioning method, two delay-dependent passivity conditions are derived for the considered systems via two novel Lyapunov functionals including mode-dependent double integral terms. Some stochastic stability criteria are also given. All the results reported in this paper not only depend upon the time-delays, but also depend upon their partitioning, which aims at reducing the conservatism. Four numerical examples are proposed to show that the methods proposed here are less conservative than the existing ones thanks to the usage of the delay partitioning method and novel Lyapunov functionals.  相似文献   

13.
In this paper, we investigate the problem of stabilization via state feedback and/or state-based switching for switched linear systems with mode-dependent time-varying delays. By using the multiple Lyapunov functional method, we establish sufficient conditions that guarantee the switched system is stabilizable via state feedback and/or switching under time-varying delays with appropriate upper bounds. The main results are presented in terms of linear matrix inequalities (LMIs) which generalize some known results and can be easily tested by using the Matlab’s LMI Tool-box.  相似文献   

14.
This paper considers the problem of leader-following consensus stability and also stabilization for multi-agent systems with interval time-varying delays. The randomly occurring interconnection information of the leader and the Markovian switching interconnection information of the agent are matters of concern in the systems. Through construction of a suitable Lyapunov–Krasovskii functional and utilization of the reciprocally convex approach, new delay-dependent consensus stability and stabilization conditions for the systems are established in terms of linear matrix inequalities (LMIs) which can be easily solved by using various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

15.
This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.  相似文献   

16.
This paper is concerned with the dissipativity analysis problem for singular systems with time-varying delays. A delay-dependent criterion is established to guarantee the dissipativity of the underlying systems using the delay partitioning technique. All the results given in this paper are not only dependent upon the time delay, but also dependent upon the number of delay partitions. The effectiveness and the reduced conservatism of the derived results are demonstrated by two illustrative examples.  相似文献   

17.
The global exponential stability of cellular neural networks (CNNs) with time-varying delays is analyzed. Two new sufficient conditions ensuring global exponential stability for delayed CNNs are obtained. The conditions presented here are related to the size of delay. The stability results improve the earlier publications. Two examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

18.
In this paper, the problem of decentralized stability of switched nonlinear large-scale systems with time-varying delays in interconnections is studied. The time delays are assumed to be any continuous functions belonging to a given interval. By constructing a set of new Lyapunov–Krasovskii functionals, which are mainly based on the information of the lower and upper delay bounds, a new delay-dependent sufficient condition for designing switching law of exponential stability is established in terms of linear matrix inequalities (LMIs). The developed method using new inequalities for lower bounding cross terms eliminate the need for overbounding and provide larger values of the admissible delay bound. Numerical examples are given to illustrate the effectiveness of the new theory.  相似文献   

19.
20.
This paper addresses exponential stability problem for a class of linear systems with time-varying delay. The time delay is assumed to be a continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a set of augmented Lyapunov–Krasovskii functional combined with the Newton–Leibniz formula technique, new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of linear matrix inequalities (LMIs). An application to exponential stability of uncertain linear systems with interval time-varying delay is given. Numerical examples are given to show the effectiveness of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号