首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
样本选择是模型转移的重要组成部分,其目的是在主光谱和从光谱中选择合适的样本,建立二者的转移模型,使得从光谱的预测样本能通过转移模型校正成类似于主光谱的样本,进而用主光谱的模型直接预测其浓度。目前,常用的样本选择算法有:Kennard-Stone法(KS法), SPXY法和SPXYE法。根据上述算法的特点,提出了一种新的样本选择方法:加权SPXYE法(WSPXYE法),进而将其用于选择合适的转移集样本。WSPXYE同样先计算样本间的距离,其距离有三个部分组成:光谱(X)之间的归一化距离d_(xs),浓度(y)之间的归一化距离d_(ys),以及校正误差(e)之间的归一化距离d_(es)。其加权代数和d_(wspxye)=αd_(xs)+βd_(ys)+(1-α-β)d_(es)即为WSPXYE距离。计算了WSPXYE距离之后,可以根据其距离选择距离较大的样本作为转移集样本。WSPXYE是Kennard-Stone法(KS法), SPXY法和SPXYE法的推广,而KS法(α=1,β=0)、 SPXY法(α=0.5,β=0.5)以及SPXYE法(α=0.333,β=0.333)则是WSPXYE法的特例。直接校正法(DS)、有信息成分提取-典型相关分析法(CCA-ICE)作为模型转移算法验证了WSPXYE方法的效果。结果显示,与KS法、 SPXY法以及SPXYE法相比, WSPXYE法可以通过调节参数,选择合适的样本,获得较低的误差。  相似文献   

2.
在近红外光谱分析中,将近红外光谱和浓度信息建立统计模型,通过光谱代入模型即可预测未知样本浓度。但是,检测条件的变化会导致光谱的改变,进而导致原有的模型不能准确预测光谱改变后的样本。对此,模型转移可以通过校正新测量的光谱(从光谱),使得从光谱能够被原有光谱(主光谱)建立的模型准确预测。模型转移可以使用全光谱进行校正,但是全光谱中往往包括噪声、背景等干扰信息,这些干扰会增加预测误差。故可以使用变量选择方法找出光谱中有化学意义的信息来模型转移。但是一般的变量选择算法只选择主光谱的区间,从光谱使用主光谱相同的波长区间模型转移。但是在实际工作中,主光谱和从光谱有化学意义的区间往往不一致,主从光谱使用同一区间模型转移会增加误差;此外,有时二者原光谱的波长范围并不一致,从主光谱选出的区间不能用于从光谱的校正。对此,提出了基于双光谱区间遗传算法(GA-IDS),同时选择主光谱和从光谱有化学意义的区间,进而实现模型转移。GA-IDS算法步骤包括,①随机产生种群;②分析种群中每条染色体,删去错误染色体;③根据每条染色体,找出其相应的主光谱和从光谱波段组合,并计算其模型转移后的验证均方根误差(RMSEV);④按照概率,执行选择、交叉、变异操作。在一次迭代结束之后,返回到步骤②,重新执行纠错、计算RMSEV、选择、交叉、变异。达到停止迭代的要求后,将最低的RMSEV值所对应的染色体保存下来作为最优染色体,其所对应的主从光谱区间作为最优区间。用玉米、小麦两套数据测试了该算法,结果显示,与全光谱相比,GA-IDS选择的主从光谱区间可以显著地降低误差;与向后迭代区间选择法(IIBS)相比,在小样本情况下,GA-IDS的误差显著地小于IIBS方法。  相似文献   

3.
近红外光谱(NIR)具有快速、无损、操作方便的特点,故广泛用于食品分析。作为一种间接的分析技术,NIR需要建立光谱与待测浓度之间的统计模型来实现检测。故模型的维护有助于保证NIR的预测准确性。在外界条件发生变化的情况下,诸如样品性状的改变、仪器对理化指标函数关系的变化、湿度和温度等环境因素的改变,会导致相同样品的光谱信号发生偏移,进而使得原有模型的预测精度下降。此时,如果重新建模,虽然可以解决光谱偏移对建模的影响,但是重新建模将耗费大量的人力物力。对此,模型转移可以在避免重新建模的情况下,校正光谱的偏移,进而提高模型预测精度。通常模型转移算法多用全光谱进行模型转移,这种方法计算量较大,且不能找到合适的有化学意义的波段。故提出一种基于模型转移中的变量选择方法:向后迭代区间选择法(IIBS),通过计算主光谱(用于建模的那组光谱)和从光谱(发生偏移,需要通过模型转移算法将其校正的光谱)中,变量区间的重要性信息(回归系数(β)、残差向量(Res)以及变量重要性投影(VIP))。进而通过计算该区间变量重要性信息的几何平均数,并以此作为该区间的区间重要性指标。接着根据区间的重要性,删除重要性信息较小的变量区间。然后对主光谱和从光谱重复迭代上述过程:计算变量的重要性信息,计算区间的重要性信息,删除重要性信息较小的区间。最后,比较不同的主光谱和从光谱区间组合的验证均方根误差(RMSEV),选择RMSEV最小的主光谱和从光谱区间作为最优区间。玉米、小麦两套NIR数据测试了该算法。结果显示,与全波段相比,β,Res以及VIP均可以从主光谱和从光谱中选择较少的,有化学意义的区间,提高模型转移的精度。在比较不同变量重要性向量方面,基于β的变量选择算法,模型转移的计算误差较小。  相似文献   

4.
良好的食用油品质的近红外光谱定量分析模型以及不同仪器间的模型共享,能够提高模型间的利用率,可以满足食用油行业的发展需要。目的是探究直接标准化算法在食用油酸值和过氧化值两个指标上的模型转移。实验样本为大豆油、花生油、芝麻油、玉米油共计50个样本。实验仪器为VERTEX 70傅里叶红外光谱仪和Antaris Ⅱ傅里叶近红外光谱仪(包含光纤探头和透射探头)。一共进行了三组实验,第一组选取主仪器VERTEX 70和从仪器Antaris Ⅱ(光纤探头部件);第二组选取主仪器VERTEX 70和从仪器结合主仪器Antaris Ⅱ(透射部件),第三组选取主仪器Antaris Ⅱ(透射部件)和Antaris Ⅱ(光纤部件)。利用直接标准化算法,结合主仪器上的偏最小二乘法校正模型,针对从仪器上的食用油酸值和过氧化值的近红外光谱模型,进行了模型转移研究。研究表明,在同为光纤探头扫描的实验仪器VERTEX 70和Antaris Ⅱ(光纤探头部件)间,模型转移前酸值和过氧化值预测均方差分别为54.675 6和1 912.219 4,使用直接标准化算法后预测均方差分别下降到0.560 13和4.836。在食用油酸值和过氧化值指标上直接标准化算法对相同原理的仪器有较好的转移效果。与过氧化值相比直接标准化算法在酸值指标上的模型转移效果较好。该研究结果对于食用油品质的快速分析模型的广泛应用具有重要意义。  相似文献   

5.
凭借高效、无损和环保的优点,近红外光谱在多个领域广泛用作物质快速分析方法的同时,仍面临着光谱标定模型生命周期短,构建仪器标定迁移方法的标准样品难以获得和保存等问题。在化学计量学文献中,迁移方法通常能够矫正主从仪器之间的光谱差异,但绝大多数方法都需要在两台仪器相同条件下测量一组迁移标准样品。虽然样品数目不必过多,但总体上表明,必须对其进行很好的选择才能保证成功迁移。对于在主从仪器中选择代表性的样本子集,现有Kennard-Stone算法作为样本选择的主要算法。在标准样本的确定问题中,假设主仪器已找到标准样本,选择的样本集需要在从仪器中进行测量,仅当迁移样本足够稳定时才有可能,但现有近红外光谱技术无法保证这一点。如果假设使用从仪器的样本作为标准样本,考虑到新工业应用中光谱光源的变更,主仪器被从仪器代替,因此不再可用。基于目前存在的这些问题,提出了一种平均分布差异最小化的NIR标定迁移方法(MCT), 此方法可以在不考虑从仪器标准样本(即标准样本自由)的情况下,针对近红外光谱数据的多重共线性,首先假设存在一个主从仪器光谱的共同偏最小二乘子空间,并将主从仪器光谱数据分别投影到该公共子空间;然后,引入平均分布差异最小化算法,即分别给出主从光谱数据在子空间的平均分布中心表示函数,在最小化两个光谱平均分布(中心点)的差异的同时,最大化投影后主仪器光谱的协方差,推导求解出最佳子空间;最后,将主光谱样本和从光谱预测样本分别投影到该偏最小二乘子空间中,利用主光谱数据得到回归模型,该模型可用于预测从光谱浓度。通过对玉米数据集和小麦数据集的测试研究,证明的预测效果与SBC,PDS,CCACT,TCR和MSC相比有所改善,该方法可以实现更低的预测误差。  相似文献   

6.
可见光/近红外光谱模型是土壤属性预测的有效工具。波长优选在光谱建模过程中起着重要作用。文中首先利用从安徽省涡阳县采集的130个砂姜黑土土壤样本获得可见光/近红外光谱,然后利用平滑与多重散射校正联合的光谱预处理方式消除光谱中的无关变量和冗余信息以提高模型预测结果的相关性,再利用SPXY方法挑选建模集样本,分别利用连续投影算法和遗传算法进行波长优选,最后利用留一法进行交互验证建立有机质含量的主成分回归模型。研究结果显示:连续投影算法和遗传算法都可以有效地减少参与建模的波长数并提高模型的准确度,尤其是遗传算法能够更好地提高土壤有机质含量预测精度,其相关系数、预测均方根误差和相对分析误差分别达到0.9316,0.2142和2.3195。通过合适的特征波长选取,不仅计算量可以大大减少,预测精度也会有效提高。  相似文献   

7.
为了实现沙棘汁品牌的快速无损鉴别,提出了采用可见-近红外光谱分析技术(NIR)鉴别沙棘汁品牌的方法。采用FieldSpec3光谱仪对三种沙棘汁进行光谱分析,各获取40个样本数据。采用平均平滑法和多元散射校正(MSC)方法对样本数据进行预处理,再用主成分法(PCA)对光谱数据进行聚类分析并获得各主成分数据。将120个沙棘汁样本随机分成90个建模样本和30个预测样本,把基于累计可信度选择的建模样本的8个主成分(PCs)数据作为BP网络的输入变量,沙棘汁品牌作为输出变量,建立三层反向传播(BP)神经网络鉴别模型,并对30个预测样本进行预测。结果表明,在阈值设定为±0.1的情况下,该模型对预测集样本品牌鉴别准确率达到了100%。所以应用近红外光谱技术结合主成分分析和BP神经网络算法识别沙棘汁品牌是一种有效的方法。  相似文献   

8.
近红外光谱分析中多变量校准模型的建立依赖于校准建模的光谱样本。然而,近红外光谱测量环境的变化会导致同一被测物的光谱样本的偏移。为了削减光谱偏移后重新建立校准模型的成本,提出一种基于深度自编码器(DAE)的非线性光谱转移方法,以端到端的形式实现不同测量环境之间的光谱转移,避免已有的线性光谱转移方法在非线性偏移光谱时效果不佳的情况。该方法在操作前不需要对光谱进行预处理和特征提取等操作,可以实现原始光谱之间的转移,是首个端到端的非线性光谱转移方法。为了实现光谱空间的有效转移,设计了一种基于条件概率和参数最大似然法的误差函数惩罚项,结合梯度反向传播算法优化深度自编码的网络参数。为了验证该方法的有效性,引入两个公共的近红外光谱数据集,分别是药片数据集和玉米数据集。利用本方法进行光谱转移的过程主要有:根据Kennard-Stone(KS)算法分别将两个数据集划分为校准集、验证集和测试集;用校准集中的光谱样本输入深度自编码器,根据设计的误差函数求出误差,并用反向传播法迭代训练网络参数,直至模型最优;将预测集样本输入训练好的DAE转移模型,可以发现转移后的光谱与相应的目标光谱谱线基本重合,这说明该设计的转移模型的有效性。最后,为了进一步验证本方法的优越性,将该方法与经典的线性转移算法光谱空间变换(SST)和分段直接标准化(PDS)进行比较。这三种算法得到的转移光谱分别作为测试样本,输入已建立的偏最小二乘(PLS)多变量校准模型,通过比较预测均方根误差(RMSEP),可以发现该方法在多变量校准模型中的预测结果的均方根误差均小于SST和PDS,分别提高了5.7%和10.1%,表明由非线性深度自编码器转移的光谱样本具有高效和实用的特点。  相似文献   

9.
模型转移是解决近红外光谱仪器间存在差异导致校正模型难以在多台仪器间通用问题的重要方法。利用主成分-马氏距离方法判断样品在不同仪器间的光谱差异性,然后通过吉洪诺夫正则化约束和校正模型参数,提出新的模型转移算法,实现模型在不同近红外光谱仪器上的共享和使用。首先使用一组标准样品光谱,建立主机和子机近红外光谱模型预测误差最小化函数。通过约束主机和子机的模型参数的差异,求出子机的模型参数,从而达到模型转移的目的。该方法应用于药物活性成分和烟叶中总植物碱与总糖的含量分析,结果表明使用15个标准样品时,子机光谱样本的预测均方根误差(RMSEP)分别从8.3 mg、 0.49%和1.91%降到3.9 mg、 0.09%和0.83%。转移后模型预测相对分析误差(RPD)均大于3.0,子机光谱样本的预测效果得到明显提高。该方法理论明确、直观,在实际应用中样品预测准确性较好,为具有标准样品的模型转移方法提供一种新思路。  相似文献   

10.
可见光/近红外光谱模型是土壤属性预测的有效工具。波长优选在光谱建模过程中起着重要作用。文中首先利用从安徽省涡阳县采集的130个砂姜黑土土壤样本获得可见光/近红外光谱,然后利用平滑与多重散射校正联合的光谱预处理方式消除光谱中的无关变量和冗余信息以提高模型预测结果的相关性,再利用SPXY方法挑选建模集样本,分别利用连续投影算法和遗传算法进行波长优选,最后利用留一法进行交互验证建立有机质含量的主成分回归模型。研究结果显示:连续投影算法和遗传算法都可以有效地减少参与建模的波长数并提高模型的准确度,尤其是遗传算法能够更好地提高土壤有机质含量预测精度,其相关系数、预测均方根误差和相对分析误差分别达到0.931 6,0.214 2和2.319 5。通过合适的特征波长选取,不仅计算量可以大大减少,预测精度也会有效提高。  相似文献   

11.
近红外光谱因为具有小成本、易操作、低耗时等优点,所以广泛用于食品领域.作为一种间接的检测方法,近红外光谱检测需要建立光谱和浓度之间的统计模型.但是,一种条件下建立的模型在另一种检测条件下会失效.针对此问题,重新建模可以加以解决,但是重新建立光谱与浓度之间的模型非常繁琐耗时.此时,模型转移可以在避免重新建模的情况下,通过...  相似文献   

12.
近红外光谱定量分析中,采用合适的校正集选择方法是建立预测性能良好的近红外定量模型的关键技术之一。校正集选择方法有RS法、CS法、KS法和SPXY法等,但是对以上校正集选择方法缺乏系统地比较。本文以积雪草总苷中积雪草苷NIR定量模型为载体,对NIR定量模型的7个评价指标进行分类和筛选,比较了CS法、KS法和SPXY法三种校正集选择方法对NIR定量模型的准确性和稳健性两类评价指标的影响。结果表明,SPXY法与CS法、KS法选择校正集样本后所建近红外模型的RPD和RSEP两个准确性评价指标存在显著性差异,模型的稳健性评价指标RMSECV和|RMSEP-RMSEC|不存在显著性差异。因此,建立积雪草总苷近红外光谱的积雪草苷偏最小二乘定量模型时,SPXY校正集选择方法能显著提高该定量模型的预测准确度,但对模型稳健性的评价指标没有显著影响,以上结论为中药固体体系建立近红外定量模型确定校正集选择方法提供参考。  相似文献   

13.
光谱多元分析校正集和验证集样本分布优选方法研究   总被引:11,自引:0,他引:11  
分析了校正集和验证集样品数随性质分布不均匀性对光谱多元分析校正的不良影响,揭示了实际光谱多元校正中“均值化”现象,即性质值小的样本预测值结果偏大,性质值大的则偏小,提出了一种优选样品新方法—Rank-KS。其综合考虑光谱空间和性质空间对样本进行挑选,将性质空间平均分为若干小区间,在每个小区间内分别利用Kennard-Stone法和随机法进行校正集和验证集样本的挑选,这样得到的校正集和验证集可明显改善样本数随性质分布的均匀性。以红外光谱测定汽油中碳酸二甲酯(DMC)含量和近红外光谱测定二甲亚砜溶液二甲亚砜浓度为研究对象,分别采用Rank-KS、随机法、Kennard-Stone、浓度梯度法和SPXY等方法选择校正集和验证集样品,使用多元线性回归和偏最小二乘法建立模型,比较这些方法对光谱多元校正分析的影响,结果表明Rank-KS方法可改善校正集和验证集样品数随性质分布的均匀性;对于样本数分布中间局部样本多和两端局部少、或者局部没有样本的样本集,使用Rank-KS算法挑选校正集,无论使用MLR还是PLS1建立多元分析模型,均能明显改善其模型预测能力,使得到的模型的预测均方根最小。  相似文献   

14.
基于近红外光谱的淡水鱼新鲜度在线检测方法研究   总被引:1,自引:0,他引:1  
新鲜度是反映鱼类品质以及可否食用的重要指标,在线检测直接关系到食品质量与安全的实施应用,因此对淡水鱼新鲜度进行在线无损检测具有重要意义。应用近红外光谱对淡水鱼新鲜度进行在线检测,试验装置采用自行搭建的淡水鱼近红外光谱在线采集装置,试验时样品在输送链上以0.5 m·s-1的速度运动,采集其近红外漫反射光谱(900~2 500 nm),并用支持向量机(support vector machine, SVM)建立淡水鱼新鲜度在线检测模型。采用光谱理化值共生距离(sample set partitioning based on joint X-Y distance algorithm, SPXY)算法对样本集进行划分,其中校正集111条(新鲜57条,变质54条)、测试集37条(新鲜19条,变质18条),通过对比不同的光谱预处理方法对预测结果的影响,明确了一阶导结合标准化预处理为最优光谱预处理方法,经过该方法预处理后所建模型对校正集的正确识别率为97.96%,对测试集的识别率为95.92%。为了提高模型运行速度对建模所用光谱变量进行优化,分别采用遗传算法(genetic algorithm, GA)、连续投影算法(successive projection algorithm, SPA)和竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS) 三种不同的特征变量选择方法对特征波长进行筛选,通过建模比较分析确定CARS为最优波长选择方法,以所选的10个特征波长建立淡水鱼新鲜度支持向量机检测模型,模型对校正集的正确识别率为100%,对测试集的识别率为93.88%。该研究可为近红外光谱用于淡水鱼新鲜度在线检测提供技术支持。  相似文献   

15.
为提高生鲜羊肉储存期内(4,8和20 ℃环境)挥发性盐基氮(TVB-N)的近红外光谱(NIR)检测的稳定性和准确性,选取特征光谱和预测模型是关键步骤。以121个羊肉样品为实验对象,采集生鲜羊肉680~2 600 nm波段的近红外光谱。以多元散射校正(MSC)、标准正态变换(SNV)等散射校正方法,Savitzky-Golay卷积平滑(SGS)、移动平均平滑(MAS)等平滑处理方法,以及归一化(Normalization)、中心化(Centering)、标准化(Autoscaling)等尺度缩放方法分别预处理光谱数据后建立偏最小二乘法(PLS)预测模型。比较发现SGS处理的光谱建模效果最好。利用蒙特卡洛采样(MCS)法及马氏距离法(MD)消除了羊肉光谱的5个异常数据。运用光谱-理化值共生距离(SPXY)算法划分总样本的75%(87个)为校正集样本,剩余29个为验证集样本,利用竞争性自适应重加权法(CARS)、无信息变量消除法(UVE)、改进的无信息变量消除法(IUVE)和连续投影算法(SPA)提取特征光谱得到的波长个数分别为14,713,144和15。将全光谱和4种方法提取的特征波长作为输入变量建立预测模型,CARS提取的波长所建立模型的性能优于UVE、IUVE和SPA提取的波长所建立模型的性能,表明CARS方法可以有效简化输入变量并提高预测模型的性能。改进后得到的IUVE法相比于UVE法,筛选出的波长数更少且模型性能有所提升。以提取的特征波长建立PLS,支持向量机(SVM)和最小二乘支持向量机(LS-SVM)预测模型,SVM模型得到最优的校正集预测结果,其中CARS-SVM预测模型的校正决定系数(R2C)和校正均方根误差(RMSEC)分别为0.939 1和1.426 7,最优的验证集预测效果为LS-SVM预测模型得到,其中IUVE-LS-SVM预测模型的验证决定系数(R2V)和验证均方根误差(RMSEV)分别为0.856 8和1.886 2。基于近红外特征光谱建立简化、优化的生鲜羊肉储存期TVB-N预测模型,为实现快速无损检测生鲜羊肉中的TVB-N浓度提供技术支持。  相似文献   

16.
在近红外光谱PLS定量模型的建立过程中训练集样本的选取和潜变量数的确定是十分重要的。因此,该研究以橘叶中橙皮苷的含量检测为例,分别比较了random sampling (RS),Kennard-Stone(KS),duplex, sample set partitioning based on joint x-y distance (SPXY) 四种训练集样本的选取方法对模型的影响,以及留一交互验证法和蒙特卡罗法对潜变量数确定的影响。结果表明,SPXY法选取的训练集建立的模型优于其他三种方法,蒙特卡罗法能够较好地确定模型的潜变量数并有效地减少过拟合风险,所建模型的交互验证均方根,预测均方根及预测集相关系数分别为0.768 1,0.736 9,0.975 2。  相似文献   

17.
有关调和油快速准确定量检测的研究对于调和油质量控制具有重要意义。以往对调和油定量分析的研究大多集中于二元、三元和四元调和油,对更高元数调和油的研究很少,难以满足调和油检测需求。该研究的目的是探讨近红外光谱结合化学计量学对五元调和油中各单组分油进行定量分析的可行性。由玉米油、大豆油、稻米油、葵花油和芝麻油配制成51个五元调和油样品,并采集各样品12 000~4 000 cm-1范围内的近红外透射光谱。首先,采用光谱-理化值共生距离(SPXY)算法将调和油样品划分为38个校正集和13个预测集样品。其次,考察了主成分回归(PCR)、偏最小二乘(PLS)、支持向量回归(SVR)、人工神经网络(ANN)、极限学习机(ELM)等五种多元校正方法对五元调和油各组分定量分析的建模效果。然后,在最佳建模方法的基础上比较了SG平滑、标准正态变量(SNV)、多元散射校正(MSC)、一阶导数(1st Der)、二阶导数(2nd Der)和连续小波变换(CWT)六种光谱预处理方法,并讨论了预处理方法有效地原因。最后,在最佳预处理方法的基础上进一步利用竞争自适应重加权采样(CARS)和蒙特卡罗无信息变量消除法(MCUVE)筛选与预测组分相关的变量。结果显示,在五种建模方法中,PLS是最佳的建模方法,对玉米油、大豆油、稻米油、葵花油和芝麻油五种组分的预测均方根误差(RMSEP)分别为5.564 4,5.559 2,3.592 6,7.421 8和4.193 0。经过光谱预处理-变量选择,再建立PLS模型,对五种组分的RMSEP分别降低至1.955 3,0.562 4,1.145 0,1.619 0和1.067 1,预测相关系数(Rp)均高于0.98,表明采用合适的光谱预处理和变量选择方法,可以明显提高五元调和油中各单组分油定量分析的预测准确度。该研究为多组分调和油的快速无损定量检测提供了一种参考。  相似文献   

18.
利用高光谱成像技术与二维相关光谱(2D-COS)结合化学计量学检测灵武长枣半纤维素含量。采用定量瘀伤装置获得0,Ⅰ,Ⅱ,Ⅲ,Ⅳ级瘀伤长枣模型,通过高光谱和分光光度计分别获得样品高光谱图像和半纤维素含量。蒙特卡洛异常值检测法剔除异常样本后,分别用随机划分法(RS),Kennard-Stone法(KS)、光谱-理化值共生距离法(SPXY)和3∶1比例法对样本集划分校正预测。采用基线校准(Baseline)、去趋势(De-trending)和标准化(Normalize)对长枣原始光谱预处理后建立偏最小二乘回归模型(PLSR),优选最佳样本集划分及预处理方法。利用2D-COS将光谱信号扩展到第2维,在全光谱范围内寻找与半纤维素含量相关的敏感波段区间。采用竞争性自适应加权算法(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩方法(iVISSA)、变量组合集群分析法(VCPA)以及iVISSA+BOSS,iVISSA+CARS和iVISSA+VCPA方法在2D-COS敏感波段区间进行特征波长提取,并建立基于特征波长的PLSR模型。结果表明,样本集经3∶1划分和Baseline预处理后建立的基于全波段的PLSR模型最优,故最佳样本集划分方法为3∶1,预处理方法为Baseline,用于后续特征波长提取。通过2D-COS分析发现3个与半纤维素相关的自相关峰(401,641和752 nm);在2D-COS敏感区域(401~752 nm范围内),采用BOSS,CARS,iVISSA,VCPA,iVISS+BOSS,iVISS+CARS,iVISS+VCPA分别提取了14,26,39,12,15,22和11个对应的特征波长,占总波长的18.9%,35.1%,52.7%,16.2%,20.2%,29.7%和14.8%。对比2D-COS和特征波建立的PLSR模型,2D-COS+iVISSA-PLSR模型效果较好,其R2C=0.747 9,R2P=0.604 7,RMSEC=0.043 8,RMSEP=0.060 3。研究表明,利用高光谱成像技术结合2D-COS可实现灵武长枣半纤维素含量的快速检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号