首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
氯化钕配合物在4—乙烯吡啶聚合反应中的催化作用   总被引:3,自引:0,他引:3  
王晓菊  于薇等 《分子催化》2001,15(3):222-224
氯化钕配合物是双烯烃聚合催化剂组分之一 ,与烷基铝所构成的二元体系对丁二烯聚合具有较佳活性 [1,2 ] ,但用氯化钕配合物催化极性单体的聚合反应尚未见报导 .极性单体的聚合是人们感兴趣的课题 ,例如 Benito等 [3 ]用过渡金属化合物 (VCl3-Al Et3)体系催化聚合 4-乙烯吡啶 (4VPy)极性单体 .但是它的催化活性较低 ,催化效率为 3.1×1 0 -4 kg· mol-1· h-1.我们研究了将含少量的氯化钕配合物催化剂用于该聚合反应 ,催化活性得到很大提高 ,催化效率达到 50 .71 Kg· mol-1· h-1.表明氯化钕配合物催化体系不仅对双烯烃而且对极性单体聚…  相似文献   

2.
对氯化钕丙酰胺配合物与烷基铝组成的二元体系催化 4 乙烯吡啶极性单体聚合反应进行了研究 ,考察影响聚合反应的各种因素。氯化钕配合物催化活性随Al Nd(摩尔比 )、催化剂浓度、聚合时间的增加而增大 ,添加吡啶给电子体可提高氯化钕配合物催化活性。不同种类烷基铝对催化活性的影响活性顺序为 :(i Bu) 3Al>(i Bu) 2 AlH >Et3Al。聚合温度在 50℃时 ,配合物催化活性最高。  相似文献   

3.
稀土羧酸盐,如辛酸盐,硬酯酸盐和环烷酸盐等组成的催化体系对共轭双烯烃聚合具有良好的活性和定向效应。但体系中要有第三组分的存在,通常采用的是烷基氯化铝,其作用是与羧酸盐羧基进行交换反应,是形成活性中心的必要条件。氯化稀土组成的体系由于自身组成含有氯离子而排除了第三组分的使用,从而简化了聚合工艺流程,有利于研究体系组分之间的反应。但是并非所有氯化稀土都适宜于这种研究,原因在于大多数氯化稀土络合物不溶于惰性有机溶剂。如氯化稀土醇合物对共轭双烯烃聚合有着相当高的活性,但是研究氯化稀土醇合物与烷基铝的反应却有着一定的困难。  相似文献   

4.
氯化稀土的某些配合物与烷基铝组成的双烯烃定向聚合催化剂用于丁二烯聚合时,大多得到分子量较高的产物。最近我们报道了可在较宽范围内改变聚丁二烯分子量的三氯化钕邻菲啰啉配合物(NdCl_3·2Phen)与氢化二异丁基铝[HAl(i-Bu)_2]所组成的新的二元氯化稀土定向聚合催化剂。本文报导该体系下的丁二烯聚合动力学,测定了聚合反应速率对  相似文献   

5.
合成了一种新的新戊氧基钕化合物-[(CH_3)_3CCH_2O]_4Nd_2O,并测定了它的晶体结构。这一化合物与氯化烷基铝和三烷基铝组成的催化体系,可使双烯烃聚合得到顺式-1,4含量为90%~98%的聚合物。该催化体系中Cl/Nd<1.5(摩尔比)时呈现均相性质,聚合丁二烯和异戊二稀的最佳活性分别出现在Cl/Nd=1.5和2.0(摩尔比),而Al/Nd摩尔比均出现在60。  相似文献   

6.
由氯化稀土的不同种类磷酸酯配合物与三烷基铝组成的Ziegler-Natta催化剂对双烯烃聚合的研究已有报道,其中聚合活性最高的NdCl_3·3P350—AlR_3二元催化体系对丁二烯溶液聚合及异戊二烯本体聚合的详细研究尚未见报道,本文考察了该体系对双烯烃的定向聚合能力,通过二元体系与相应的催化剂活性体聚合规律的对比,提高对稀土催化聚合反应过程的认识。  相似文献   

7.
本文应用氚醇淬灭法和动力学方法研究了丁二烯在钕化合物-烷基铝催化体系中的聚合动力学.结果表明,聚合速度与单体浓度和活性中心浓度的一次方成正比.对烷基铝的链转移反应进行了研究,测定了用几种不同的钕化合物和烷基铝所组成的催化剂时的链转移速度.链终止反应速度与活性中心浓度的二次方成正比.计算了在不同聚合条件和各种催化剂组成时的链增长、对烷基铝链转移及链终止反应的速度常数.  相似文献   

8.
本文研究了四种钕化物(C_8H_7NdCl_2·HCl·THF,C_5H_5NdCl_2·THT,NaCl_3·2THF或NaCl_3·C_6H_5OH·THF)分别与烷基铝所组成的新型催化体系引发丁二烯聚合反应动力学。上述各种体系当聚合温度50℃,[Al]/[Nd]摩尔比为30时,聚合历程均属缓慢引发非稳态反应类型:当[Al]/[Nd]摩尔比为60时,C_9H_7NdCl_2·HCl·THF体系聚合历程变  相似文献   

9.
钕-铝双金属配合物催化异戊二烯聚合的原位环化反应   总被引:1,自引:0,他引:1  
环化聚异戊二烯 (CPIP)具有优良的光敏性、较好的耐热性和力学性能 ,在光刻胶、胶粘剂、橡胶改性等方面得到广泛应用 [1,2 ] .CPIP可按阳离子机理经单体环聚或聚合物环化两种方法合成 .我们 [3]最近提出一种直接从单体出发在稀土催化聚合过程中引入烯丙基氯原位合成 CPIP的方法 .本文在此基础上 ,以三异丙氧基钕 -三乙基铝 -一氯二乙基铝均相体系中分离出的钕 -铝双金属配合物作为单组分催化剂 ,简化聚合体系 ,以便直观地考察氯化物、烷基铝等的作用 ,揭示稀土催化 IP聚合原位环化反应的过程 .1 实验部分   CPIP的合成参见文献 […  相似文献   

10.
以外添加的方式,考查了甲基铝氧烷(MAO)对多核钕-铝双金属配合物催化了二烯聚合的影响,并与烷基铝存在下的作用结果相比较.结果表明,MAO用量较低时(n(Al)/n(Nd)在5~20之间),即可较烷基铝更大程度提高稀土配合物的催化活性,获得顺式聚了二烯;MAO的链转移作用较烷基铝的低.  相似文献   

11.
Contributions to Organolanthanide Chemistry. II. Cyclopentadienyllanthanide 1,3-Butadiene Complexes – Synthesis, Properties, and Reactions From cyclopentadienyllanthanide dihalides and “magnesium butadiene” Cp*La(C4H6) · MgI2 · 3 THF ( I ), Cp*Ce(C4H6) · MgBr2 · 2 THF ( II ), Cp*Nd(C4H6) · MgCl2 · 2 THF ( III ), (1,3-(t-C4H9)2C5H3)Nd(C4H6) · MgCl2 · 2 THF ( IV ), CpEr(C4H6) · MgCl2 · 2 THF ( V ) and (1,3-(t-C4H9)2C5H3)Lu(C4H6) · MgCl2 · 2 THF ( VI ) were obtained as highly air sensitive complexes which react easily with proton active compounds and molecules with multible bonds. The reaction products with diphenylamine and carbon dioxide Cp*Nd(NPh2)2 · NHPh2 ( VII ) and Cp*Ce(O2CC4H6CO2) ( VIII ) are discribed. I–VIII were characterized by elementary analysis, i.r., 1H and 13C n.m.r., and EI-MS spectra.  相似文献   

12.
The polymerization of butadiene in toluene initiated by the NdCl3 · 3TBP-Mg(C4H9)(i-C8H17) (TBP is tributyl phosphate) catalytic system has been studied. It has been shown that the polymerization reaction under study is a nonstationary slowly initiated process. The addition of carbon tetrachloride promotes an increase in the catalytic activity of the system. The products of polymerization have low molecular masses and polydispersity indexes. The content of 1,4-trans-units in the polymer is as high as 95%.  相似文献   

13.
Kinetics of ϵ-caprolactone (ϵCL) polymerization initiated with diethylaluminum ethoxide in benzene (C6H6) and acetonitrile (CH3CN) as solvents was studied and compared with the previously studied polymerization conducted in tetrahydrofuran (THF) solvent. Kinetic data were analyzed in terms of the kinetic scheme: “propagation with aggregation,” assuming that actually propagating active species (Pn*) aggregate reversibly into the unreactive (dormant) species . The determined equilibrium constants of deaggregation (Kda) decrease with decreasing solvent polarity, namely Kda (in mol2·L−2) = (1.3 ± 0.7)·10−2 (CH3CN), (1.8 ± 0.5)·10−5 (THF), (4.1 ± 0.7)·10−6(C6H6), whereas for the rate constants of propagation the opposite is true, kp (in mol−1·L·s−1) = (7.5 ± 0.3)·10−3 (CH3CN), (3.87 ± 0.01)·10−2 (THF), (8.6 ± 0.9)·10−2 (C6H6) (25°C). The latter effect is explained by a specific solvation (the stronger the higher solvent polarity) of the active species already in the ground state in the elementary reaction of the poly(ϵCL) chain growth: C2H5[OC(O)(CH2)5]nO(SINGLE BOND)Al(C2H5)2 + ϵCL → C2H5[OC(O)(CH2)5]n+1O(SINGLE BOND)Al(C2H5)2. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The compound η5-C5H5NdCl2 · 3THF was successfully prepared from NaC5H5 and NdCl3 in tetrahydrofuran (THF). Methods preventing disproportionation are discussed.X-ray diffraction data of the compound were collected at low temperature (about 210 K). Crystals belong to monoclinic space group P21/n with a 7.864(3), b 17.198(7), c 15.212(5) Å, β = 94.46(3)°, Z = 4. 1791 reflections were considered observed. The structure was solved by heavy-atom methods. Least-squares refinement converged to a final value of R = 0.049.  相似文献   

15.
16.
Organometallic Compounds of the Lanthanides. 88. Monomeric Lanthanide(III) Amides: Synthesis and X-Ray Crystal Structure of [Nd{N(C6H5)(SiMe3)}3(THF)], [Li(THF)2(μ-Cl)2Nd{N(C6H3Me2-2,6)(SiMe3)}2(THF)], and [ClNd{N(C6H3-iso-Pr2-2,6)(SiMe3)} 2(THF)] A series of lanthanide(III) amides [Ln{N(C6H5) · (SiMe3)}3(THF)x] [Ln = Y ( 1 ), La ( 2 ), Nd ( 3 ), Sm ( 4 ), Eu ( 5 ), Tb ( 6 ), Er ( 8 ), Yb ( 9 ), Lu ( 10 )] could be prepared by the reaction of lanthanide trichlorides, LnCl3, with LiN(C6H5)(SiMe3). Treatment of NdCl3(THF)2 and LuCl3(THF)3 with the lithium salts of the bulky amides [N(C6H3R2-2,6)(SiMe3)]? (R = Me, iso-Pr) results in the formation of the lanthanide diamides [Li(THF)2(μ-Cl)2Nd{N(C6H3Me2-2, 6)(SiMe3)}2(THF)] ( 11 ) and [ClLn{N(C6H3-iso-Pr2-2,6)(SiMe3)} 2(THF)] [Ln = Nd ( 12 ), Lu ( 13 )], respectively. The 1H- and 13C-NMR and mass spectra of the new compounds as well as the X-ray crystal structures of the neodymium derivatives 3 , 11 and 12 are discussed.  相似文献   

17.
Electron-rich Phenyl Complexes of Transition Metals. II. Li4Co2(C6H5)4 · 4THF, Li4Co2(C6H5)4 · 3 Dioxan and Li3Co(C6H5)2(LiC6H5) · 5THF, the First Complexes with a Bis(phenyl)-cobalt(0)- and -cobalt(-I) Unity . Li2CoII(C6H5)4 · 4THF reacts spontaneously in benzene by splitting off of two phenyl radicals to a dimeric bis(phenyl) cobalt(0) complex which has been isolated as a THF and a dioxan adduct Li4Co2(C6H5)4 · 4THF and Li4Co2(C6H5)4 · 3 Dioxan, respectively. Reduction with lithiumphenyl in ether gives a phenyl cobalt(-I) complex Li4Co(C6H5)3 · 5THF containing besides σ-bonded phenyl anions lithium phenyl coordinated to cobalt in a π-complex like manner, proved by means of 13C? NMR-spectroscopy. The stabilization of the low oxidation states is explained by coordination of the lithium ions to cobalt by multiple center bonds, and for each compound a plausible structure is derived.  相似文献   

18.
Contributions to the Chemistry of Organo Transition Metal Compounds. 52. Preparation, Characterization, and Reactions of (C5H5)3Ce · THF and Na[Ce(C5H5)4] · THF (C5H5)3 · THF ( I ) was synthesized in a simple manner by reaction of (NH4)2[Ce(NO3)6] with C5H5Na. With excess C5H5Na the complex Na[Ce(C5H5)4] · THF ( II ) could be obtained. In addition of cyclovoltammetric and polarographic measurements it was tried without success to transfer I and II into organocerium( IV ) compounds by means of different oxidizing agents. II reacts with I2 and (C6H5)3CCl forming Na[(C5H5)3CeI] · THF or Na[(C5H5)2CeI2] · 4 THF and I besides of (C6H5)3CCl respectively. At interaction of I with Co(acac)3 the cobalticinium salt [(C5H5)2Co][C5H5Ce(acac)3] is formed. The compounds obtained were characterized by elementary analysis, hydrolysis products, magnetic moments, i.r., 1H-n.m.r. und u.v.-vis spectra, and measurements of electric conductivity.  相似文献   

19.
The preparation of uncharged complexes with metal amide bonds of type [MeN4]±0 (Me = Zn2+, Cr2+ is reported. These compounds are obtained by the interaction between Zn(C6H5)2 or Cr(C6H5)3 · 3 THF and 2-[β-(phenyl-amino)-ethyl]-pyridine (I). The same complexes are formed by the reaction between ZnCl2 · 2 THF, CrBr2 · 2 THF, or CrCl3 · 3 THF and the lithium amide (II), which is prepared from (I) and phenyl lithium. The structure of the chromium(II) complex is discussed on the basis of magnetic and visible absorption measurements.  相似文献   

20.
The Structure of an unusual Tetramere of Lithium Phenoxide: [C6H5OLi · C4H8O]4 · C6H5OH Single crystals of lithium phenoxide have been obtained from THF. In the structure (P 21/n, Z = 4, a = 11.69 Å, b = 21.15 Å, c = 18.55 Å, β = 91.11°) four lithium atoms and four phenoxide oxygen atoms are cubically arranged. Further, each lithium atom coordinates the oxygen atom of a tetrahydrofuran molecule. The ideal cubeform structure is disturbed by one phenol molecule which is coordinated in addition to four phenoxide and four THF molecules. Hence, one edge of the cube (Li4? O4) is substituted by the coordination of the phenol oxygen atom O5 with Li4 and hydrogen bonding between O4 and the hydroxy group of phenol. Van der Waals forces are the only interaction between these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号