首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

2.
Heats of formation of MeI+, MeI2, MeI3? and MeI42? where Me2+, Cd2+ or Hg2+ were determined in acidic solutions by flow microcalorimetry. Some gaps in the literature data were filled. In particular, ΔH3 for the mercury(II) complex was determined and the ΔH1, ΔH2 + ΔH3, ΔH4 for zinc(II) complexes were measured in sodium free solutions to avoid ionic couple formation. For cadmium(II) complexes, existing data were confirmed. Thermodynamic functions are discussed in term of hard/soft interactions.  相似文献   

3.
Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of 2-thiophenecarbonyl hydrazone of 3-isatin (H2L1) and 2-furoic hydrazones of 3-isatin (H2L2) and 3-(N-methyl)isatin (HL3), with general composition [M(L)2] · nX, where X is ethanol or/and water, were synthesised and characterised. The molecular structure of HL3 showed that it crystallised in the keto form, which is also the more abundant tautomer for the three hydrazone ligands in solution. The three ligands behave as κ2-O,N donors in the cobalt(II) and zinc(II) complexes. The X-ray crystal structure of pseudotetrahedral [Zn(HL1)2] · 1.75MeOH confirmed the O,N coordination mode of the two monodeprotonated ligands in their keto forms. Secondary interactions of zinc ions with the O atoms of each isatin keto residue provoke a substantial distortion towards a square pyramidal form. The interaction of the isatin keto residues is stronger in the three nickel(II) complexes where the three acylhydrazones can be considered as κ3-O,N,O donors.  相似文献   

4.
Thermodynamic parameters (ΔG 0 and ΔS 0) of the isoenthalpic (except for 4-halo derivatives) coordination of (tetraphenylporphyrinato)zinc(II) with anilines in chloroform at 273–313 K linearly correlate with the shift of their electronic absorption maxima in the reaction with anilines, as well as with the logarithms of the stability constants of the complexes, pK a values of the ligands in water, and substituent constants σ+. The 2: 1 complex of (tetraphenylporphyrinato)zinc(II) with p-phenylenediamine was characterized by the X-ray diffraction data  相似文献   

5.
The complexation of humic acid from Azraq Oasis with two heavy metal ions Cd(II) and Zn(II) was investigated at pH 4 and 5 under constant ionic strength of 0.1 and at different temperatures (25, 35, 45, 55 and 65 °C). This investigation was done by using Schubert's ion-exchange equilibrium method, and its modified version.The derived conditional stability constants (log βn) for these two metal-humate complexes were determined; they formed 1:1 and 1:2 complexes. It was found that the conditional stability constants (log βn) increased by increasing pH and temperatures for all metal-humate complexes. It was found that the conditional stability constant log β1 for Cd-humate is bigger than Zn-humate at all the desired temperatures and at pH 4 and 5.The derived constants and their temperature dependences have been used to calculate the corresponding thermodynamic parameters ΔG, ΔH, and ΔS, the results indicate that the stability of these complexes derives from very favorable entropy.  相似文献   

6.
Calorimetric and potentiometric measurements have been made at 25°C of the formation of the mono- and bis-hydroxyproline complexes of cobalt(II), nickel(II), copper(II) and zinc(II) and the proline complexes of copper(II) and nickel(II). The data have been used to calculate ΔG, ΔH and ΔS values for both protonation and metal complexation and these are discussed in terms of the nature of the metal—ligand binding.  相似文献   

7.
Zinc(II) complexes of the formula [Zn(L)(X)2] (where X = Cl, N3, NCO and SCN (1a-d, respectively)) and {[Zn(L)(ClO4)(H2O)](ClO4)}n (2), were isolated in the pure form on the reaction of 1,3-bis(2-pyridylmethylthio)propane (L) with different zinc(II) salts. All the complexes were characterized by physicochemical and spectroscopic tools. The X-ray crystallographic analyses of the complexes 1d and 2 showed that the former is mononuclear while complex 2 is a 1D coordination polymer, {[Zn(L)(ClO4)(H2O)](ClO4)}n, due to a different coordination mode of the tetradentate ligand L. The zinc(II) ions present an octahedral coordination geometry in both compounds, which is more distorted in the mononuclear complex 1d. The study indicates that the counter anion of the zinc(II) salt used as reactant leads to a different type of complex when isolated as a crystalline material. A spectroscopic study of the interaction of complex, 2 with calf thymus-DNA (CT-DNA) in Tris-HCl buffer showed a significant non-intercalative interaction with a binding constant (Kb) of 4.7 × 104 M−1, and the linear Stern-Volmer quenching constant (Ksv) and the binding sites (n) were found to be 1.3 × 103 and 0.92 respectively, calculated from ethidium bromide (EB) fluorescence displacement experiments.  相似文献   

8.
The Cu(II) and Co(II) complexes with 3,5-diphenyl-4-amino-1,2,4-triazole (L) of the composition CuLA2 · H2O (A = Cl?, Br?), CuL2A2 (A = Cl?, Br?, NO 3 ? ), CoL2A2 · nH2O (A = Cl?, n = 1; A = NCS?, n = 0) are synthesized. In these complexes, the ligand L is coordinated to a metal in monodentate mode through the heterocyclic N(1) atom. The Cu: L = 1: 1 complexes have binuclear structures with the anions acting as bridges, whereas the M: L = 1: 2 complexes are mononuclear. Both ferro-and antiferromagnetic exchange interactions are detected for the synthesized complexes.  相似文献   

9.
Chiral Schiff base complexes containing azo-groups, bis(N-R-1-naphtylethyl-4-phenyldiazenylsalicydenaminato) nickel(II), copper(II), and zinc(II) complexes affording a distorted square planar trans-[MN2O2] coordination geometry were prepared newly. Organic/inorganic hybrid materials in polymethylmethacrylate (PMMA) cast films of them (a containing type) or the analogous chiral Schiff base complexes, bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato) nickel(II), copper(II), and zinc(II), and azobenzene (AZ) (a separated type) were assembled for comparison of polarized UV light induced molecular arrangement caused by Weigert effect. Investigation of parameters for optical anisotropy of metal complexes as well as AZ suggested that the degree of increasing optical anisotropy of the containing type is higher than that of the separated type based on π-π (of which characteristic band appeared around 380 nm), n, and d-d bands of polarized absorption electronic spectra. Rigid nickel(II) or zinc(II) complexes are easy to increase optical anisotropy than flexible copper(II) complexes for both types.  相似文献   

10.
The metal ions Co(II), Ni(II), Zn(II), Zr(IV), and Hg(II) reacted with synthesized Schiff base (L) in mole ratios 1:2 (M:L) formed metal complexes. The structure of the prepared compounds was identified based on the data obtained from elemental analyses, magnetic measurement, melting point, conductivity, Fourier-transform infrared, UV–Vis., nuclear magnetic resonance spectroscopy, X-ray diffraction (XRD) spectra, and thermal analysis (TG/DTG [thermogravimetric/differential thermal analysis]). The results indicate that the L bound as bidentate through the oxygen atom of the hydroxyl group and nitrogen atom of the azomethine group with the metal ions and the complexes is electrolyte in nature. TG/DTG studies confirmed the chemical formula for complexes. The kinetic and thermodynamic parameters such as E*, ΔH*, ΔS*, and ΔG* were determined by using Coats–Redfern and Horowitz–Metzger methods at n = 1 and n ≠ 1. The XRD patterns exhibited a semicrystalline nature lying between the amorphous and crystalline nature for L, (D), and (E), but the complexes (A), (B), and (C) possessed a crystalline character. Density functional theory confirmed the structural geometry of the complexes. In vitro antimicrobial activities were performed for L and its metal complexes.  相似文献   

11.
The reaction of apple pectin modified by organic pharmacophores (nicotinic, salicylic, 5-aminosalicylic, and anthranilic acids) with Cu(II) cations was studied by spectral methods. The compositions of the complexes were determined and their stability constants, as well as the thermodynamic parameters (ΔH 0, ΔG 0, ΔS 0) of the complex formation were calculated. The structure of the drug in the polymeric ligand was found to affect certain physicochemical properties of the metal complexes.  相似文献   

12.
《Thermochimica Acta》1987,109(2):331-342
Thermal investigation of metal carboxylato complexes of the first transition metals, Mn(II), Fe(II), Fe(III), Co(II), Ni(II) and Cu(II) and non-transition metals like Zn(II) and Cd(II) in the solid state has been carried out under non-isothermal conditions in nitrogen atmosphere by simultaneous TG and DTA. TG and DTA curves inferred that the thermal stability of the complex decreased approximately with the increase of the standard potential of the central metal ion. The thermal parameters like activation energy, Ea, enthalpy change, ΔH, and entropy change, ΔS, corresponding to the dehydration and decomposition of the complexes are determined from TG and DTA curves by standard methods. A linear correlation is found between ΔH and ΔS and Ea and ΔS in dehydration and decomposition processes. DTA curves show an irreversible phase transition for Na2Mn(mal)2], Na2[Cu(mal)2] and Na2,[Co(suc)2] complexes. The residual products in these decomposition processes being a mixture of two oxides, of oxide and carbonate or a mixture of two carbonates.  相似文献   

13.
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(II), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type [M2LX2nH2O and [Ni2LX22H2O]·nH2O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(II) and Cu(II) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method.  相似文献   

14.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

15.
The formation of mixed-ligand complexes in the M(II)–Nta, Ida–L (M = Cu(II), Ni, Zn, Co(II), L = Ser, Thr, Asp, Arg, Asn) systems, where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, respectively, is studied using pH measurements, calorimetry and spectrophotometry. The thermodynamic parameters (logK, ΔrG0, ΔrH, ΔrS) of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) are determined. The most likely scenario of amino acid residue coordination in the composition of mixed complexes is discussed.  相似文献   

16.
A series of bis-phosphine monoxide (BPMO) palladium(II) and platinum(II) cationic complexes of the type [M(BPMO-κ2-P,O)2][X]2 (M = Pd, Pt; BPMO = Ph2P-(CH2)n-P(O)Ph2 with n = 1 (dppmO), 2 (dppeO), 3 (dpppO); X = BF4, TfO) were prepared from the corresponding chlorides [MCl2(BPMO-κ1-P)2] upon treatment with 2 equiv. of AgX in wet acetone/CH2Cl2 or MeOH solutions. They were characterized by 1H and 31P{1H} NMR spectroscopies and, in the case of the complex [Pt(dppeO-κ2-P,O)2][BF4]2, also by X-ray crystallography. These complexes were tested as catalysts in some Diels-Alder and oxidation reactions with different substrates. In the latter reaction Pt(II) complexes showed moderate activity, while for the former one, both classes of complexes were active in the C-C coupling, in particular the Pt(II) species showed interesting high endo/exo diasteroselectivity depending on the counteranion.  相似文献   

17.
Complex formation of primary dipeptide hydroxamic acids, L-Ala-L-AlaNHOH and L-Ala-L-SerNHOH, as well as the corresponding Z-protected ones, Z-L-Ala-L-AlaNHOH and Z-L-Ala-L-SerNHOH (Z = benzyloxycarbonyl), with iron(III), aluminium(III), nickel(II), copper(II) and zinc(II) was studied in aqueous solution by pH-potentiometric and spectroscopic (UV–Vis, EPR, CD, 1H NMR) methods. The exclusive formation of [O,O] chelated hydroxamate complexes was found with iron(III) and aluminium(III) with all the ligands. Formation of linkage isomers with the involvement of either [O,O] hydroxamate or [NH2,CO] chelates was detected both in the zinc(II)-L-Ala-L-AlaNHOH and -L-Ala-L-SerNHOH systems. Upon increasing the pH, none of these chelating sets are capable of preventing the hydrolysis of the metal ion. The formation of stable complexes was found in the nickel(II) and copper(II) systems above pH ∼ 6 with a [NH2, Namide, Nhydrox.] binding mode after deprotonation and coordination of the peptide amide and the hydroxamate group. With an excess of copper(II), the formation of trinuclear [Cu3HxL2]x+4 type (x = −4 to −6) complexes as the major species was also detected. Blocking the terminal amino group in the Z-protected ligands results in a dramatic decrease of the nickel(II) and zinc(II) binding strengths, and insoluble complexes with copper(II). No indication was found for the role of the hydroxyl group of the serine moiety in metal ion binding.  相似文献   

18.
Novel transition metal complexes with the repaglinide ligand [2-ethoxy-4-[N-[1-(2piperidinophenyl)-3-methyl-1-1butyl] aminocarbonylmethyl]benzoic acid] (HL) are prepared from chloride salts of manganese(II), iron(III), copper(II), and zinc(II) ions in water-alcoholic media. The mononuclear and non-electrolyte [M(L)2(H2O)2]?nH2O (M = Mn2+, n = 2, M = Cu2+, n = 5 and M = Zn2+, n = 1) and [M(L)2(H2O)(OH)]?H2O (M = Fe3+) complexes are obtained with the metal:ligand ratio of 1:2 and the L-deprotonated form of repaglinide. They are characterized using the elemental and molar conductance. The infrared, 1H and 13C NMR spectra show the coordination mode of the metal ions to the repaglinide ligand. Magnetic susceptibility measurements and electronic spectra confirm the octahedral geometry around the metal center. The experimental values of FT-IR, 1H, NMR, and electronic spectra are compared with theoretical data obtained by the density functional theory (DFT) using the B3LYP method with the LANL2DZ basis set. Analytical and spectral results suggest that the HL ligand is coordinated to the metal ions via two oxygen atoms of the ethoxy and carboxyl groups. The structural parameters of the optimized geometries of the ligand and the studied complexes are evaluated by theoretical calculations. The order of complexation energies for the obtained structures is as follows:
$$Fe(III) complex < Cu(II) complex < Zn(II) complex < Mn(II) complex.$$
The redox behavior of repaglinide and metal complexes are studied by cyclic voltammetry revealing irreversible redox processes. The presence of repaglinide in the complexes shifts the reduction potentials of the metal ions towards more negative values.
  相似文献   

19.
《Polyhedron》1988,7(6):421-424
The standard enthalpies of formation, at 298 K, of the 1-phenyl-1,3-butanedione (HBZAC) and 1,1,1-trifluoro-2,4-pentanedione (HTFAC) crystalline complexes of cobalt(II) were determined by precise solution—reaction calorimetry: ΔH0f{Co(BZAC)2,cr} = −632±6.0 kJ mol−1 ΔH0f{Co(TFAC)2,cr} = −2140±10 kJ mol−1. The average molar bond-dissociation enthalpies, <D>(CoO) were derived.  相似文献   

20.
Log K, ΔH0, and ΔS0 values valid at zero ionic strength are reported or summarized from previous studies for cyanide ion interaction with bivalent nickel, zinc, cadmium, and mercury at 10, 25, and 40 °C. From the values of ΔH0 as a function of temperature, average ΔCp0 values are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号