首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the proposed phase separations in doped manganites, we performed Monte-Carlo calculations for the ferromagnetic Kondo lattice model with strong Hund's coupling between conduction electrons and localized spins. For the practical calculations, we adopted a one dimensional lattice and treated the spins of the localized t2g electrons semi-classically. A direct evidence of the phase separation is observed from a snapshot of the spatial dependence of localized spins. No indication of the canted or spiral phases is found in the results of simulations. Further, the calculated results of the spin structure factor in the phase separation region are well compared with recent experiments. Received: 1st September 1998 / Revised: 30 October 1998 / Accepted: 27 November 1998  相似文献   

2.
The Kondo divergences owing to interaction of current carriers with local moments in highly correlated electron systems are considered within the Hubbard and s-d exchange models with infinitely strong on-site interaction, the many-electron Hubbard representation being used. The picture of density of states containing a peak at the Fermi level is obtained. Various forms of the self-consistent approximation are used. The problem of the violation of analytical properties of the Green's function is discussed. Smearing of the “Kondo” peak owing to spin dynamics and finite temperatures is investigated. Received 25 November 1999 and Received in final form 31 January 2000  相似文献   

3.
Single crystals of the one-dimensional phase Ca3Co2O6 of several mm length have been grown. The magnetic study of such a crystal confirms the previous observations on polycrystalline samples: it consists of a triangular lattice of ferromagnetic [Co2O6] chains ( K) antiferromagnetically coupled ( K). The dynamic of these chains array, probed by AC susceptibility, is very slow as shown from the large shift of the freezing temperature from 12 K to 16.5 K as the excitation frequency increases by three orders of magnitude (100 to 103 Hz). The origin of this effect is believed to be the result of different arrangements with close energies for the chain ferromagnetic moments on the triangular lattice. Five stable magnetic configurations have been evidenced by the magnetization as a function of applied field curves registered at 2 K. Their relative magnetizations correspond to m =1/4, 1/2, 1, 2, 3 where m =3 represents the ferromagnetic ordering of three chains on the same triangle, each chain having a m =1 magnetization. A magnetic phase diagram is finally proposed. Received 7 December 1999  相似文献   

4.
5.
We study the magnetic field dependence of the dielectric response of large cylindrical molecules such as nanotubes. When a field-induced level crossing takes place, an applied electric field has two effects: it may cause a linear instead of the usual quadratic Stark effect or the difference in the quadratic Stark coefficient of the two levels leads to a discontinuity in the polarization. Explicit calculations are performed for doped nanotubes and a rich structure in the real part of the low-frequency dielectric function is found when a magnetic field is applied along the cylinder axis. It is suggested that studies of can serve as a spectroscopic tool for the investigation of large ring-shaped or cylindrical molecules. Received 11 January 2000 and Received in final form 19 May 2000  相似文献   

6.
The electronic structure and the Fermi surface BaB6 are studied as a function of doping in a conventional bandstructure approach based on the local density approximation to density functional theory (LDA). In particular it is shown that magnetic breakthrough can occur between the two sheets of the Fermi surface disconnected by electron-hole mixing and the spin-orbit interaction. It is further suggested that angle-resolved photoemission will see a single ellipse in the (100) plane for certain doping values, due to the finite energy/momentum resolution of the method. Transport properties, computed within Bloch-Boltzmann theory, are also presented. The bare plasma energy is found to be 0.6 eV in the stoichiometric compound. Received 23 May 2000  相似文献   

7.
We show that the optical response of metals with strong electron-electron correlation consists of two excitations, a renormalized Drude response at zero energy and a mid-infrared peak occurring at frequencies around 2000 cm-1. The latter originates from a dynamical, correlation-induced gap, as evinced from a many body theoretical approach based on the periodic Anderson model. At very low temperatures, it can be viewed as optical gap between two renormalized quasi-particle bands. The gap size is proportional to the geometric mean of the characteristic lattice Kondo temperature of the material and its bandwidth. Received 28 August 2000 and Received in final form 31 October 2000  相似文献   

8.
Four ferrofluids, distinct in size distribution and aggregate structure, were investigated. The relaxation time ,related to the temperature of susceptibility maximum, was fitted to a Vogel-Fulcher law. A mean ordering temperature, T0, was calculated using magnetic particle parameters derived from the structure. It is assumed that at T0 the particle moments of particle clusters correlate, leading to a spin glass-like transition. Hence, then dynamic slows down considerably, as indicated by a strong broadening of relaxation-time distribution. T0 roughly agrees with the energy of competing interaction between particle moments, as calculated from the structure of particle aggregates. Differences between particle arrangements clearly influence the dispersion and absorption, particularly within the cluster phase. Received 15 July 1998  相似文献   

9.
Specific heat versus temperature curves for various pressures, or magnetic fields (or some other external control parameter) have been seen to cross at a point or in a very small range of temperatures in many correlated fermion systems. We show that this behavior is related to the possibility of existence of a quantum critical point. Vicinity to a quantum critical point in these systems leads to a crossover from quantum to classical fluctuation regime at some temperature . The temperature at which the curves cross turns out to be near this crossover temperature. We have discussed the case of the normal phase of liquid Helium three and the heavy fermion systems CeAl3 and UBe13 in detail within the spin fluctuation theory, a theory which inherently contains a low energy scale which can be identified with . When the crossover scale is a homogeneous function of these control parameters there is always crossing at a point. We also mention other theories exhibiting a low energy scale near a quantum critical point and discuss this phenomenon in those theories. Received 25 June 1999  相似文献   

10.
We exploited resonant photoemission at the Ce absorption edge to investigate the Ce 4f states in . High resolution spectra reveal, near the Fermi level, the characteristic fine structure of intermediate valence Ce compounds. The spectral lineshape is consistent with the typical “Kondo” character of CePd, but the prominent ionization peak is found at the unusually low binding energy of 1 eV. We briefly discuss the implications of these observations. Received: 13 October 1997 / Accepted: 21 January 1998  相似文献   

11.
Using the numerical renormalization group method, the dependences on temperature of the magnetic susceptibility χ(T) and specific heat C(T) are obtained for the single-impurity Anderson model with inclusion of d-f the Coulomb interaction. It is shown that the exciton effects caused by this effect (charge fluctuations) can significantly change the behaviour of C(T) in comparison with the standard Anderson model at moderately low temperatures, whereas the behaviour of χ(T) remains nearly universal. The ground-state and temperature-dependent renormalizations of the effective hybridization parameter and f-level position caused by the d-f interaction are calculated, and satisfactory agreement with the Hartree-Fock approximation is derived.  相似文献   

12.
13.
We present thermodynamic and magnetic studies of single crystalline DyFe3(BO3)4. The data indicate an easy axis antiferromagnetic order below TN~ 38 K which we attribute to the Fe subsystem. The Dy subsystem remains paramagnetic down to the lowest investigated temperatures of 2 K, but it is polarized by the Fe spins due to a f-d interaction. External magnetic field leads to a spin-flop transition in the iron subsystem as well as to superposed magnetization in the Dy subsystem. The repopulation of two low-lying Kramers doublets in Dy3+ ions results in well defined Schottky anomalies in specific heat and magnetization.  相似文献   

14.
Three-dimensional magnetic ordering transitions are studied theoretically in strongly anisotropic quantum magnets. An external magnetic field can drive quasi-one-dimensional subsystems with a spin gap into a gapless regime, thus inducing long-range three-dimensional magnetic ordering due to weak residual magnetic coupling between the subsystems. Compounds with higher spin degrees of freedom, such as N-leg spin-1/2 ladders, are shown to have cascades of ordering transitions. At high magnetic fields, zero-point fluctuations within the quasi-1D subsystems are suppressed, causing quantum corrections to the ordering temperature to be reduced. Received 24 March 2000  相似文献   

15.
Thermal expansion and forced magnetostriction measurements are reported on two Gd intermetallic compounds which order magnetically below 10 K. The relative influence of the electronic, lattice and magnetic degrees of freedom was determined using results obtained on a non-magnetic isostructural compound. A Grüneisen analysis revealed that whilst the magnetic contribution to the specific heat is similar for both Pd2GdIn and Cu2GdIn the spontaneous magnetostriction was significantly smaller in the Pd compound. Forced magnetostriction measurements suggest that the thermal expansion in Pd2GdIn is primarily associated with spin fluctuations in the Pd 4d band. It is suggested that these additional degrees of freedom give rise to the enhanced specific heat observed in Pd2GdIn. Received 28 July 1999  相似文献   

16.
The structural transitions that appear in the manganites Ca1-xThxMnO3 versus temperature are studied in connection with their magnetic and transport properties, and compared to those of the Ca1-xLnxMnO3 manganites. An orthorhombic to monoclinic transition is observed for low x values (;this structural distortion, also observed for Ln-doped oxides, is related to the magnetoresistance properties. For higher x values (), modulated commensurate and incommensurate phases are obtained at low temperature, with , b =2 a p and , which are related to Mn3+/Mn4+ charge ordering (CO) phenomena. T values, determined from electron diffraction, are in agreement with those determined from the M ( T ) curves. The low temperature electron microscopy shows that the CO in those oxides is more complex than in Ln-doped manganites. In particular, the destabilisation of CO and consequently of the antiferromagnetic interactions is evidenced as the thorium content increases which may explain the appearance of a spin-glass like behavior for higher x values not seen for Ca1-xSmxMnO3 phases . Received 2 November 1998  相似文献   

17.
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations. Received: 27 April 1998 / Revised: 2 September 1998 / Accepted: 10 September 1998  相似文献   

18.
In Rare-Earth (RE) systems, direct overlapping of 4f orbitals plays a role if the distance between RE ions is sufficiently small. Especially, such a situation happens under pressure for RE metals and RE compounds. Furthermore, in Actinide systems, 5f orbitals are more extended than the previously considered 4f orbitals. Therefore, in this case, direct overlapping of 5f orbitals should be taken into account even without applying pressure. In the present work, using Standard Basis Operators, we study direct overlapping effect of f orbitals for valence fluctuating materials in Kondo regime. An important result within our present model is that direct f orbital overlapping reduces f electron effective mass.  相似文献   

19.
We compare different approximation schemes for investigating ferromagnetism in the periodic Anderson model. The use of several approximations allows for a detailed analysis of the implications of the respective methods, and also of the mechanisms driving the ferromagnetic transition. For the Kondo limit, our results confirm a previously proposed mechanism leading to ferromagnetic order, namely an RKKY exchange mediated via the formation of Kondo screening clouds in the conduction band. The contrary case is found in the intermediate-valence regime. Here, the bandshift correction ensuring a correct high-energy expansion of the self-energy is essential. Inclusion of damping effects reduces stability of the ferromagnetic phase. Received 5 June 2000 and Received in final form 3 August 2000  相似文献   

20.
Charge ordering phenomena in the manganites Ca1-xSmxMnO3 have been studied for , using electron diffraction and lattice imaging, completed by magnetic and transport measurements. Three domains can be distinguished, depending on the nature of the structural transitions with temperature. For , the structural transition from a pseudo-tetragonal to a monoclinic form, with decreasing temperature, coincides with the competition between ferromagnetism and antiferromagnetism that is characterized by the temperature Tpeak on the M ( T ) curves; short-range charge ordering is observed for manganites. For the second domain, , a structural transition from an orthorhombic to a long-range charge ordered state is clearly observed with decreasing temperature. The corresponding temperature TCO coincides with the temperature Tpeak deduced from magnetic measurements. This long range charge ordering, which appears along a, is either commensurate or incommensurate depending on the x value, with a modulation vector, q being close to x. These modulated superstructures correspond to a stacking of single Mn3+ stripes with multiple Mn4+ stripes along a, either in a commensurate or in an incommensurate manner. The third domain , is characterized by a transition to a charge ordered state with commensurate superstructure at low temperature. The latter can be described as a “partially” charge ordered state in which single “Mn3+” stripes alternate with mixed “Mn3+/Mn4+” stripes. Received 17 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号