首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dicyclopentadienylcarbonyl chloride cations of tungsten and molybdenum, (C5H5)2M(CO)Cl+ (M W, Mo) are obtained from a reaction of the corresponding dichlorides with AlCl3 and CO. Reduction of (C5H5)2W(CO)Cl+ in the presence of CO gives the dicarbonyl complex (C5H5)2W(CO)2. The corresponding molybdenum complex was not obtained under analogous reaction conditions.  相似文献   

2.
Specific ion/molecule reactions are demonstrated that distinguish the structures of the following isomeric organosilylenium ions: Si(CH3) 3 + and SiH(CH3)(C2H5)+; Si(CH3)2(C2H5)+ and SiH(C2H5) 2 + ; and Si(CH3)2(i?C3H7)+, Si(CH3)2(n?C3H7)+, Si(CH3)(C2H5) 2 + , and Si(CH3)3(π?C2H4)+. Both methanol and isotopically labeled ethene yield structure-specific reactions with these ions. Methanol reacts with alkylsilylenium ions by competitive elimination of a corresponding alkane or dehydrogenation and yields a methoxysilylenium ion. Isotopically labeled ethene reacts specifically with alkylsilylenium ions containing a two-carbon or larger alkyl substituent by displacement of the corresponding olefin and yields an ethylsilylenium ion. Methanol reactions were found to be efficient for all systems, whereas isotopically labeled ethene reaction efficiencies were quite variable, with dialkylsilylenium ions reacting rapidly and trialkylsilylenium ions reacting much more slowly. Mechanisms for these reactions and differences in the kinetics are discussed.  相似文献   

3.
The structures of [C6H5]+ species, formed from a variety of precursors, have been investigated by ion/molecule reactivity studies with pulsed ion cyclotron resonance mass spectrometry and by collision spectroscopy with mass-analyzed ion kinetic energy spectrometry. Formed by sequential ion/molecule reactions in gaseous acetylene, the [C6H5]+ species are present as a mixture of isomers, those that react with acetylene and those that do not. Ion-assisted dehalogenation reactions were used to establish that the unreactive [C6H5]+ isomer was the phenylium ion. These data were used to study and confirm collisional decomposition reactions postulated to be diagnostic of the acyclic and phenylium isomers. These diagnostic reactions were then used to study the composition of the [C6H5]+ isomers produced by electron ionization of a number of precursors. These results are contrasted with previous studies and the collision spectroscopy experiments are described in detail. The possible role of [C6H5]+ species in flame processes is discussed.  相似文献   

4.
Selected ion flow tube mass spectrometry, SIFT-MS, has been used to investigate if absolute levels of trace compounds in the headspace of ethanol/water vapour mixture can be quantified. This case study was directed towards the analysis of methylamine in distilled ethanol of agricultural origin because of its relevance to quality control legislation in the distillery industry. This has required a detailed study of the ion chemistry occurring – initiated by H3O+ precursor ions – when ethanol/water vapour mixtures are introduced into the H3O+/helium carrier gas swarm and has resulted in the construction of a full scheme of the complex ionic reactions that occur. It has been found that under the SIFT-MS flow reactor conditions (He pressure 130 Pa and temperature 299 K) the terminating ions of the several parallel and sequential reactions that occur are the proton bound ethanol clusters ions, C2H5OH2+(C2H5OH)n, with n = 1,2,3, proton bound trimer (n = 2) being the dominant species. These ethanol cluster ions can be used as precursor (reagent) ions for the chemical ionisation of the methylamine present in the ethanol/water vapour, which produces two characteristic product ions CH3NH2H+(C2H5OH)1,2 that are used for the methylamine analysis. The ratio of the product ion count rate to the precursor ion count rate is used in an analogous way to the routinely used for SIFT-MS analyses to quantify the methylamine concentration. The results of calibration experiments show that using SIFT-MS it is possible to quantify methylamine in liquid ethanol/water mixtures at levels of 0.1 mg/L or greater.  相似文献   

5.
An orange/brown ionic and polymeric Mo(V) ion (Mo to Na ratio 2.3:1), soluble in H2O to give stable solutions at pH~6, with UV visible spectrum λmax 318nm, ?(per Mo) 330OM?1 cm?1, has been prepared and partially characterised. Various properties are described, including the conversion to the well established Mo(V) aquo dimer, MO2O42+, on adjustment of [H+] to 0.17–0.50 M, I=0.50 M (H/LiClO4). First-order rate constants, kobs(25°C), determined by conventional spectrophotometry give a good fit to the empirical rate law,  相似文献   

6.
We report the results of a selected ion flow tube (SIFT) study of the reactions of H3O+, NO+ and O+2 with some nine carboxylic acids and eight esters. We assume that all the exothermic proton transfer reactions of H3O+ with all the acid and esters molecules occur at the collisional rate, i.e. the rate coefficients, k, are equal to kc; then it is seen that k values for most of the NO+ and O+2 reactions also are equal to or close to kc. The major ionic products of the H3O+ reactions with both the acids and esters are the protonated parent molecules, MH+, but minor channels are also evident, these being the result of H2O elimination from the excited (MH+)1 in some of the acid reactions and an alcohol molecule elimination (CH3OH or C2H5OH) in some of the ester reactions. The NO+ reactions with the acids and esters result in both ion-molecule association producing NO+M in parallel with hydroxide ion (OH) transfer with some of the acids, and parallel methoxide ion (CH3O) and ethoxide ion (C2H5O) transfer as appropriate with some of the esters. The O+2 reactions proceed by dissociative charge transfer with the production of two or more ionic fragments of the parent molecules, the different isomeric forms of both the acid and the ester molecules resulting in different product ions.  相似文献   

7.
In the ion/molecule reactions of the cyclometalated platinum complexes [Pt(L? H)]+ (L=2,2′‐bipyridine (bipy), 2‐phenylpyridine (phpy), and 7,8‐benzoquinoline (bq)) with linear and branched alkanes CnH2n+2 (n=2–4), the main reaction channels correspond to the eliminations of dihydrogen and the respective alkenes in varying ratios. For all three couples [Pt(L? H)]+/C2H6, loss of C2H4 dominates clearly over H2 elimination; however, the mechanisms significantly differs for the reactions of the “rollover”‐cyclometalated bipy complex and the classically cyclometalated phpy and bq complexes. While double hydrogen‐atom transfer from C2H6 to [Pt(bipy? H)]+, followed by ring rotation, gives rise to the formation of [Pt(H)(bipy)]+, for the phpy and bq complexes [Pt(L? H)]+, the cyclometalated motif is conserved; rather, according to DFT calculations, formation of [Pt(L? H)(H2)]+ as the ionic product accounts for C2H4 liberation. In the latter process, [Pt(L? H)(H2)(C2H4)]+ (that carries H2 trans to the nitrogen atom of the heterocyclic ligand) serves, according to DFT calculation, as a precursor from which, due to the electronic peculiarities of the cyclometalated ligand, C2H4 rather than H2 is ejected. For both product‐ion types, [Pt(H)(bipy)]+ and [Pt(L? H)(H2)]+ (L=phpy, bq), H2 loss to close a catalytic dehydrogenation cycle is feasible. In the reactions of [Pt(bipy? H)]+ with the higher alkanes CnH2n+2 (n=3, 4), H2 elimination dominates over alkene formation; most probably, this observation is a consequence of the generation of allyl complexes, such as [Pt(C3H5)(bipy)]+. In the reactions of [Pt(L? H)]+ (L=phpy, bq) with propane and n‐butane, the losses of the alkenes and dihydrogen are of comparable intensities. While in the reactions of “rollover”‐cyclometalated [Pt(bipy? H)]+ with CnH2n+2 (n=2–4) less than 15 % of the generated product ions are formed by C? C bond‐cleavage processes, this value is about 60 % for the reaction with neo‐pentane. The result that C? C bond cleavage gains in importance for this substrate is a consequence of the fact that 1,2‐elimination of two hydrogen atoms is no option; this observation may suggest that in the reactions with the smaller alkanes, 1,1‐ and 1,3‐elimination pathways are only of minor importance.  相似文献   

8.
The thermal ion/molecule reactions (IMRs) of the Group 14 metal oxide radical cations MO . + (M=Ge, Sn, Pb) with methane and ethene were investigated. For the MO . +/CH4 couples abstraction of a hydrogen atom to form MOH+ and a methyl radical constitutes the sole channel. The nearly barrier‐free process, combined with a large exothermicity as revealed by density functional theory (DFT) calculations, suggests a fast and efficient reaction in agreement with the experiment. For the IMR of MO . + with ethene, two competitive channels exist: hydrogen‐atom abstraction (HAA) from and oxygen‐atom transfer (OAT) to the organic substrate. The HAA channel, yielding C2H3 . and MOH+ predominates for the GeO . +/ethene system, while for SnO . + and PbO . + the major reaction observed corresponds to the OAT producing M+ and C2H4O. The DFT‐derived potential‐energy surfaces are consistent with the experimental findings. The behavior of the metal oxide cations towards ethene can be explained in terms of the bond dissociation energies (BDEs) of MO+? H and M+? O, which define the hydrogen‐atom affinity of MO+ and the oxophilicity of M+, respectively. Since the differences among the BDEs(MO+? H) are rather small and the hydrogen‐atom affinities of the three radical cations MO . + exceed the BDE(CH3? H) and BDE(C2H3? H), hydrogen‐atom abstraction is possible thermochemically. In contrast, the BDEs(M+? O) vary quite substantially; consequently, the OAT channel becomes energetically less favorable for GeO . + which exhibits the highest oxophilicity among these three group 14 metal ions.  相似文献   

9.
Oxirane chemical ionization (CI) gives numerous ions, including C2H3O+ and C2H5O+. These ions react with organic molecules through various specific ion–molecule reactions such as hydride abstraction, protonation, additions or cycloadditions. Oxirane CI allows discrimination between unsaturated compounds with [M + 43]+ and [M + 57]+ adduct ions and heteroatom functions with [M + 45]+ adduct ion. All are diagnostic ions. Oxirane CI permits selectivity during the ionization process of a mixture and discrimination of isomers.  相似文献   

10.
It is shown by ion cyclotron resonance measurements that ion/molecule reactions, leading to substitution or reduction product ions from chloro- and nitrobenzene with the title amines, are those between the molecular ions [RNH2]+ or [C6H5X]+˙ and their respective counterparts C6H5X or RNH2. The protonated reagent gas ions [RNH3]+ are not involved in these reactions. In the case of nitrobenzene, adduct ions [C6H5NO2·RNH3]+ do not decompose within the time scale of the measurements. The results obtained are compared with those found under chemical ionization conditions.  相似文献   

11.
A very recent laser ablation‐molecular beam experiment shows that an Al+ ion can react with a single methylamine (MA, CH3NH2) or dimethylamine (DMA, (CH3)2NH) molecule to form a 1:1 ion–molecule complex Al+[CH3NH2] or Al+[(CH3)2NH)], whereas a dehydrogenated complex ion Cu+[CH3N] or Cu+[C2H5N] is detected, respectively, in the similar reaction for a Cu+ ion. Here, we show a comparative density functional theory study for the reactivities of the Al+ and Cu+ ions toward MA and DMA to reveal the intrinsic mechanism. It is found that the interactions of the Al+ ion with MA and DMA are mostly electrostatic, leading to the direct ion–molecule complexes, Al+? NH2CH3 and Al+? NH( CH3)2, in contrast to the non‐negligible covalent character in the corresponding Cu+‐containing complexes, Cu+? NH2CH3 and Cu+? NH( CH3)2. The general dehydrogenation mechanism for MA and DMA promoted by the Cu+ ion has been shown, and the preponderant structures contributing to the mass spectra of the product ions Cu+[CH3N] and Cu+[C2H5N] are rationalized as Cu+? NHCH2 and Cu+? N( CH2)( CH3). The presumed dehydrogenation reactions are also discussed for the Al+‐containing systems. However, the involved barriers are found to be too high to be overcome at low energy conditions. These results have rationalized all the experimental observations well. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

12.
The rate constants and modes of reaction of NO2+ and C2H5ONO2NO2+ with aromatic compounds and alkanes have been determined in a pulsed ion cyclotron resonance mass spectrometer. Both ions undergo competing charge transfer and substitution reactions (NO2+ + M → MO+ + NO; C2H5ONO2NO2+ + M → MNO2+ + C2H5ONO2) with aromatic molecules. In both cases, the probability that a collision results in charge transfer increases with increasing exothermicity of that process. The C2H5ONO2NO2+ ion does not undergo charge transfer with molecules having an ionization potential greater than about 212 kcal/mol (9.2 eV); this observation leads to an estimate of 13 kcal/mol for the binding energy between NO2+ and C2H5ONO2. The importance of the substitution reaction depends on the number of substituents on the aromatic ring and the molecular structure, and, in the case of C2H5ONO2NO2+ ions, on the energetics of the competing charge transfer process. Both NO2+ and C2H5ONO2NO2+ undergo hydride transfer reactions with alkanes. For both these ions, k(hydride transfer)/k (collision) increases with increasing exothermicity of reaction, but in both cases the rate constants of reaction are unusually low when compared with other hydride transfer reactions of comparable exothermicity which have been reported in the literature. This is interpreted as evidence that the attack on the alkane preferentially involves the nitrogen atom (where the charge is localized) rather than one of the oxygen atoms of NO2+.  相似文献   

13.
The loss of a hydrogen atom from ionized 2-methylpropanenitrile is preceded by a drastic rearrangement of the molecular ion. The result of this fragmentation is the generation of two stable structurally different [C4H6N]+ ions, formed via different pathways. Their structures can be established by a careful comparison of the metastable ion spectra, collision activation spectra, and charge stripping spectra from the compound and its three deuterium labeled analogues and from [C4H6N]+ ions generated from reference compounds via electron impact ionization or in selected ion/molecule reactions.  相似文献   

14.
The speciation of compounds [Cp*2M2O5] (M=Mo, W; Cp*=pentamethylcyclopentadienyl) in different protic and aprotic polar solvents (methanol, dimethyl sulfoxide, acetone, acetonitrile), in the presence of variable amounts of water or acid/base, has been investigated by 1H NMR spectrometry and electrical conductivity. Specific hypotheses suggested by the experimental results have been further probed by DFT calculations. The solvent (S)‐assisted ionic dissociation to generate [Cp*MO2(S)]+ and [Cp*MO3]? takes place extensively for both metals only in water/methanol mixtures. Equilibrium amounts of the neutral hydroxido species [Cp*MO2(OH)] are generated in the presence of water, with the relative amount increasing in the order MeCN≈acetone<MeOH<DMSO. Addition of a base (Et3N) converts [Cp*2M2O5] into [Et3NH]+[Cp*MO3]?, for which the presence of a N? H???O?M interaction is revealed by 1H NMR spectroscopy in comparison with the sodium salts, Na+[Cp*MO3]?. These are fully dissociated in DMSO and MeOH, but display a slow equilibrium between free ions and the ion pair in MeCN and acetone. Only one resonance is observed for mixtures of [Cp*MO3]? and [Cp*MO2(OH)] because of a rapid self‐exchange. In the presence of extensive ionic dissociation, only one resonance is observed for mixtures of the cationic [Cp*MO2(S)]+ product and the residual undissociated [Cp*2M2O5] because of a rapid associative exchange via the trinuclear [Cp*3M3O7]+ intermediate. In neat methanol, complex [Cp*2W2O5] reacts to yield extensive amounts of a new species, formulated as the mononuclear methoxido complex [Cp*WO2(OMe)] on the basis of the DFT study. An equivalent product is not observed for the Mo system. The addition of increasing amounts of water results in the rapid decrease of this product in favor of [Cp*2W2O5] and [Cp*WO2(OH)].  相似文献   

15.
The hydration reaction of ethylene, C2H4+H2O → C2H5OH, catalyzed by oxoacids (H3PO4, H2SO4, and HClO4) and metal cations (B3+, Al3+, Sc3+, Ga3+, La3+, Be2+, Mg2+, Ca2+, Zn2+, and Sr2+) are studied systematically by density functional theory with a BLYP functional. The reaction profiles of the main reaction and some side reactions, such as ester formation, dimerization of ethylene, and dehydrogenation of ethanol, have been determined with a variety of catalysts. In each case, the intermediate states, the transition states, and their energetics are calculated. Metal cations react more efficiently for the main reaction than oxoacids, but they also make the dehydrogenation reaction active. While the dimerization reaction is strongly affected by the acidity of the catalyst, both the acidity and basicity of the catalyst are important for the dehydrogenation reaction. Efficient formation of ethanol from ethylene over a catalyst is suggested. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1292–1304, 2000  相似文献   

16.
Tandem mass spectrometric studies show that SiH+5 is formed in bimolecular reactions of SiH4 and NH+2, C2H+3, C2H+6 and C3H+8 ions. The dependence of the reaction cross sections on ion energy indicates the formation of SiH+5 from NH+2, C2H+3, and C2H+6 to be exothermic reactions, while formation from C3H+8 is endothermic. Using known thermochemical data, these facts permit the assignment of 150 and 156 kcal/mole to the lower and upper limits of the proton affinity of monosilane.  相似文献   

17.
The gas phase reactions of metal ions (Al+, Cu+) with amine molecules [CH3NH2=MA, (CH3)2NH=DMA] were investigated using a laser ablation‐molecular beam method. The directly associated product complex ions,Al+‐MA and Al+‐DMA, and the dehydrogenation product ions, Cu+(CH2NH) and Cu+(C2H5N), as well as hydrated ion Cu+(NC2H5·H2O), have been obtained and recorded from the reactions of the metal ions and organic amine molecules, and density functional theory (B3LYP) calculations have been performed to reveal the optimized geometry, energetics, and reaction mechanism of the title reactions with basis set 6‐311+G(d,p) adopted.  相似文献   

18.
Photodissociation experiments and ion/molecule reactions with pyridine and hex-1-ene show that [C3H6O] ions from propylene oxide isomerize to the vinyl metbyl ether structure. [C3H6O] fragment ions from methyl-substituted 1,3-dioxolanes have lower internal energies. In these cases a mixture of photodissociating ring-opened propylene oxide ions and vinyl methyl ether ions is observed.  相似文献   

19.
The reactions of MC5H+5 (M = Ni and Co) with propane in gaseous phase have been studied with an ion trap mass spectrometer; the MC5H+5 ions are able to activate the propane molecule which undergoes a dehydrogenation reaction. At variance with the reactions of the bare metal ions no loss of methane is observed; the reaction mechanism has been explored by means of DFT calculations and a possible explanation is offered for the different reactivity of these ligated ions.  相似文献   

20.
Gas-phase ion–molecule reactions of transition metal ions, M+ (M+ = Ni+, Co+, Fe+ and Mn+), with six aromatic ring-containing nitriles were investigated in a modified fast atom bombardment (FAB) source. It is shown that the monoadduct, (Ph(CH2)nCN)–M+, is one of the most abundant ion–molecule reaction products. The main fragments in the FAB source are the [C7H7]+ and [C8H9]+ ions, and their formation is shown to involve metal ion insertion into the nitriles rather than direct bond cleavage from the ‘free’ or complexed nitriles after FAB ionization. An intramolecular oxidation–reduction reaction, giving [C7H7]+, is found in the metastable and collisionally induced dissociations of benzyl nitrile adducts accompanied by neutral MCN formation, but not seen for longer chain samples. An ortho effect is observed in the elimination of HCN from the 2-methylbenzyl nitrile adduct ions. This reaction dominates the metastable ion spectrum of the adduct of Mn+, whereas metal detachment is nearly the major process for the other complexes of Mn+. The different bond-insertion selectivities of the metal ions are also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号