首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complexation behavior of NpO2 + with ortho-silicic acid (o-SA) has been studied using solvent extraction at ionic strengths varying from 0.10 to 1.00M (NaClO4) at pcH 3.68±0.08 and 25 °C with bis-(2-ethylhexyl) phosphoric acid (HDEHP) as the extractant. The stability constant value (log β1) for the 1:1 complex, NpO2(OSi(OH)3), was found to decrease with increase in ionic strength of the aqueous phase [6.83±0.01 at I=0.10M to 6.51±0.02 at I = 1.00M]. These values have been fitted in the SIT model expression and compared with similar values of complexation of the metal ions Am3+, Eu3+, UO2 2+, PuO2 2+, Np4+, Ni2+ and Co2+. The speciation of NpO2 +-o-silicate/carbonate system has been calculated as a function of pcH under ground water conditions. On leave from Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.  相似文献   

2.
The Er3+-Li+ codoped TiO2 powders have been prepared by the non-aqueous sol–gel method. The green and red upconversion emissions centered at about 526, 550 and 663 nm were observed by the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+, respectively. Li+ codoping has opposite effect on the upconversion emissions intensities for Er3+-doped TiO2 at sintering temperatures of 1,073 and 1,273 K. At 1,073 K, the Er3+-doped TiO2 phase transition from anatase to rutile was accelerated with increasing Li+ codoping concentration, leading to the increase of crystal field symmetry of Er3+, thus the upconversion emissions intensities decreased. At 1,273 K, Li+ codoping had no effect on the phase structure of Er3+-doped TiO2 and only increased the Er–O bond length, it indicated that the upconversion emissions intensities greatly enhanced because of the decrease of crystal field symmetry of Er3+.  相似文献   

3.
The corroding process of six glasses of the Na2O-K2O-CaO-ZrO2-SiO2 system with ZrO2content 0–2.13 mass % by water was observed during static tests at 121°C and pressure of 0.25 MPa in steam sterilizer. Significant increase of Na+ and K+ content in leachates was observed after the addition of ZrO2 into glass. Further increase of the content of ZrO2 in glasses slowed down the rate of Na+ and K+ leaching. The leaching process of SiO2 as well as Na+, K+, and Ca2+ ions was evaluated on the basis of comparison with model leaching processes. Variation of the concentrations of Na+, K+, Ca2+, and SiO2 in leachates with time was described by empirical equation. Observed changes in the initial leaching rates of Na+, K+, Ca2+, and SiO2 can be ascribed to the content of ZrO2 in glasses. The presence of ZrO2 in glasses reduced the overall rate of glass dissolution.  相似文献   

4.
CaAl2O4:Eu2+, Nd3+@TiO2 composite powders were synthesized by a sol–gel method under mild conditions (i.e. low temperature and ambient pressure). The as-prepared powders were characterized by transmission electron microscopy (TEM) and analyzed by X-ray diffraction (XRD). The photocatalytic behavior of the TiO2-base surfaces was evaluated by the degradation of nitrogen monoxide gas. It suggested that CaAl2O4:Eu2+, Nd3+@TiO2 composite powders were composed of anatase titania and that CaAl2O4:Eu2+, Nd3+. TiO2 particles were deposited on the surface of CaAl2O4:Eu2+, Nd3+ to form uniform film. CaAl2O4:Eu2+, Nd3+@TiO2 composite powders exhibited higher photocatalytic activity compared with pure TiO2 under visible light. And the result also clearly indicated that the long afterglow phosphor absorbed and stored lights for the TiO2 to remain photocatalytic activity in the dark.  相似文献   

5.
The visible light irradiation of the [(η5-C6H7)Fe(η-C6H6)]+ cation (1) in acetonitrile resulted in the substitution of the benzene ligand to form the labile acetonitrile species [(η5-C6H7)Fe(MeCN)3]+ (2). The reaction of 1 with ButNC in MeCN produced the stable isonitrile complex [(η5-C6H7)Fe(ButNC)3]+ (3). The photochemical reaction of cation 1 with pentaphosphaferrocene Cp*Fe(η-cyclo-P5) afforded the triple-decker cation with the bridging pentaphospholyl ligand, [(η5-C6H7)Fe(μ-η:η-cyclo-P5)FeCp*]+ (4). The latter complex was also synthesized by the reaction of cation 2 with Cp*Fe(η-cyclo-P5). The structure of the complex [3]PF6 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2088–2091, November, 2007.  相似文献   

6.
The Ru-Cs+/MgO and Ru-Cs+/γ-Al2O3 catalysts, which were prepared by an impregnation method using RuOHCl3 and Cs2CO3 as precursor compounds and reduced with H2 at 450°C, are characterized by X-ray diffraction, high-resolution transmission electron microscopy (with X-ray microanalysis), and X-ray photoelectron spectroscopy (XPS). The Cs+/MgO(Al2O3) systems, Ru-Cs+ black, and model systems prepared by cesium sputtering onto polycrystalline ruthenium foil are studied as reference samples. It is found that, in the Ru-Cs+/MgO sample, cesium is present as a Cs2 + xO cesium suboxide, which weakly interacts with the support, localized on the surface of Ru particles or near them. In the case of Ru-Cs+/γ-Al2O3, cesium occurs as a species that is tightly bound to the support; this is likely surface cesium aluminate, which prevents promoter migration to Ru particles. The Ru-Cs+/MgO sample exhibits a considerable shift of the Ru3d line in the XPS spectra toward lower binding energies, as compared to the bulk metal. It is hypothesized that this shift is due to a decrease in the electron work function from the surface of ruthenium because of the polarizing effect of Cs+ ions in contact with Ru particles. Based on the experimental results, the great difference between the catalytic activities of the Ru-Cs+/MgO and Ru-Cs+/γ-Al2O3 systems in ammonia synthesis at 250–400°C and atmospheric pressure is explained.  相似文献   

7.
The heteropolytungstate (NH4)20[Na2(H2O)2Ni(H2O)5{Ni(H2O)}2As4W40O140] · 61H2O is obtained by the reaction of Na27[NaAs4W40O140] · 60H2O with NiCl2 · 6H2O and NH4Cl in pH≈4.0. The structure and chemical composition are determined by X-ray diffraction analysis and element analysis. The crystal data and main structure refinement are: a = 1.33135(18) nm, b = 1.9722(3) nm, c = 3.6430(5) nm, α = 78.010(2)°, β = 82.145(2)δ, γ = 74.385(2)°, V = 8.978(2) nm3, triclinic crystal system, space group: P1, Z = 2, R1 = 0.0512, and wR2 = 0.0684(I >2σ). The four S2 sites of the big cyclic ligand [As4W40O140]28- are occupied by two Na+ and two Ni2+ respectively, and each site supplies four Od coordinating to metal ion. The coordination number of Ni2+ is six, and that of two Na+ is five and six respectively. The third Ni2+ locates outside the cyclic [As4W40O140]28- and connects with one Od, and its coordination number is six.  相似文献   

8.
The binding of cations Li+, Na+, K+, Cs+, Ag+, Zn2+, Ni2+, Co2+, NH4 + (group I), H+, Mg2+, Al3+, Ga3+ (group II), and Ca2+, Pb2+ (group III) by 21,31-diphenyl-l 2,42-dioxo- 7,10,13-trioxa-l,4(3,1)-diquinoxalina-2(2,3),3(3,2)-diindolizinacyclopentadecaphane (1), which contains two indolizine and two quinoxaline fragments and 3,6,9-trioxaundecanes spacer, and by its acyclic analog (2) was studied using cyclic voltammetry in MeCN/0.1 M Bu4NBF4. It was concluded that the ions of group I are not bound by these compounds, the ions of group II exhibit the reversible redox-switched binding by the carbamoyl groups of the quinoxaline fragments, whereas the ions of group III are bound not only by the initial compounds and radical cations 1 and 2, but also by dication 1. This binding of the Ca2+ and Pb2+ ions stabilizes dication 1.  相似文献   

9.
Rhombohedral hexametavanadates K4Sr(VO3)6, K4Ba(VO3)6, Rb4 Ba(VO3)6, and Cs4Ba(VO3)6 melt incongruently in the temperature range of 491 to 600°C. Cooling of peritectic melts yields mixtures of compounds typical of M2+O-M2+O-V2O5 systems, far from equilibrium and depending on the cooling kinetics. The vanadate Cs4Ba(VO3)6 undergoes reversible polymorphic transformation at 360°C. All compounds show broad-band luminescence with a maximum of the luminescence spectrum at 490–590 nm with three types of excitation. The vanadates K4Sr(VO3)6 and Rb4Ba(VO3)6 show the highest luminescence intensity at room temperature. The latter is also most efficient at liquid nitrogen temperatures. The luminescence spectra depend on the excitation of vanadates. Three hypotheses were put forward to interpret this finding. The nature of luminescence is attributed to the relaxation of electronic excitation in [VO4]3− structural tetrahedra present in the vanadates. The performance characteristics of luminophores were determined. These luminophores may be promising as X-ray luminescent screens, radioluminescence indicators, and light-emitting diode devices.  相似文献   

10.
The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4→TiC2H2 + (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm−1 in the intermediate complex IM1-4B2. Thus, the changes of its spin multiplicity may occur from the quartet to the doublet surface to form IM1-2A1, leading to a sig-nificant decrease in the barrier height on the quartet PES. After the insertion intermediate IM2, two distinct reaction paths on the doublet PES have been found, i.e., a stepwise path and a concerted path. The latter is found to be the lowest energy path on the doublet PES to exothermic TiC2H2 +(2A2) + H2 products, with the active barrier of 4.52 kcal/mol. In other words, this reaction proceeds in the following way: Ti++C2H44IC→IM1-4B24,2ISC→IM1-2A1→[2TSins]→IM2→[2TSMCTS]→IM5→TiC2H2 +(2A2)+H2. Supported by ‘Qinglan’ Talent Engineering Funds by Tianshui Normal University.  相似文献   

11.
In the Bi2O3-SiO2-V25++O5 system, single crystal solid solutions of the sillenite family of the general composition Bi24(Bi,Si,V)2O40 are obtained by a hydrothermal method and for the first time characterized by neutron and X-ray diffraction analysis. The tetrahedral position is found to contain vanadium ions with different formal charges (V4+ and V5+) responsible for green and orange colors, respectively, of the samples. For the first time, for some sillenites of this system dissymmetrization of the structure (a transition from the I23 space group into P23) is revealed, which is caused by the presence of several atoms in one crystallographic position and also by crystal growth conditions.  相似文献   

12.
The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr2MgSi2O7:Eu2+,R3+ materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr2MgSi2O7:Eu2+,R3+ material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 °C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr2MgSi2O7:Eu2+,R3+ materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R3+ co-dopants.  相似文献   

13.
Properties of the quantum-cutting phosphors are dependent on various factors such as dopant concentration, crystallinity, homogeneity, particle size and surface morphology. Effective control of the above parameters can enhance the quantum-cutting ability of the phosphor material. Nano-sized particles of Y2O3:Tb3+,Yb3+ were prepared with a solution-based co-precipitation method and subsequent calcination. Effective control of the reaction parameters and doping concentration helped to produce uniform nanostructures with high quantum-cutting efficiency up to 181.1 %. The energy transfer mechanism between Tb3+ and Yb3+ was studied by considering their spectroscopic properties and time-resolved spectroscopy. The high efficiency and small particle size of the quantum-cutting phosphor Y2O3:Tb3+,Yb3+ make it a suitable candidate for its application in solar cells.  相似文献   

14.
LiNi0.80Co0.15Al0.05O2 (NCA) is explored to be applied in a hybrid Li+/Na+ battery for the first time. The cell is constructed with NCA as the positive electrode, sodium metal as the negative electrode, and 1 M NaClO4 solution as the electrolyte. It is found that during electrochemical cycling both Na+ and Li+ ions are reversibly intercalated into/de-intercalated from NCA crystal lattice. The detailed electrochemical process is systematically investigated by inductively coupled plasma-optical emission spectrometry, ex situ X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The NCA cathode can deliver initially a high capacity up to 174 mAh g?1 and 95% coulombic efficiency under 0.1 C (1 C?=?120 mA g?1) current rate between 1.5–4.1 V. It also shows excellent rate capability that reaches 92 mAh g?1 at 10 C. Furthermore, this hybrid battery displays superior long-term cycle life with a capacity retention of 81% after 300 cycles in the voltage range from 2.0 to 4.0 V, offering a promising application in energy storage.  相似文献   

15.
Solubility product (Lu(OH)3(s)⇆Lu3++3OH) and first hydrolysis (Lu3++H2O⇆Lu(OH)2++H+) constants were determined for an initial lutetium concentration range from 3.72·10−5 mol·dm−3 to 2.09·10−3 mol·dm−3. Measurements were made in 2 mol·dm−3 NaClO4 ionic strength, under CO2-free conditions and temperature was controlled at 303 K. Solubility diagrams (pLuaq vs. pC H) were determined by means of a radiochemical method using 177Lu. The pC H for the beginning of precipitation and solubility product constant were determined from these diagrams and both the first hydrolysis and solubility product constants were calculated by fitting the diagrams to the solubility equation. The pC H values of precipitation increases inversely to [Lu3+]initial and the values for the first hydrolysis and solubility product constants were log10 β* Lu,H = −7.92±0.07 and log10 K*sp,Lu(OH)3 = −23.37±0.14. Individual solubility values for pC H range between the beginning of precipitation and 8.5 were S Lu3+ = 3.5·10−7 mol·dm−3, S Lu(OH)2+ = 6.2·10−7 mol·dm−3, and then total solubility was 9.7·10−7 mol·dm−3.  相似文献   

16.
Density functional theory (DFT) methods have been applied to study the properties of series of N5 + salts. The thermal stabilities of the crystals are evaluated based on the reaction enthalpy (ΔH) and free energy change (∆G) of the salts when they dissociate into neutral products. The energy outputs of salts in explosion indicate that all N5 + salts yield large energy except for N5SbF6 and N5Sb2F11. Considering the released energy and thermal stability, (N5)2SnF6, N5PF6, N5BF4, and N5SO3F may be potential candidates of very energetic explosives.  相似文献   

17.
The Gibbs free energies of solvation (ΔG s) and the electronic structures of endohedral metallofullerenes M+@C60 (M+= Li+, K+) were calculated within the framework of the density functional theory and the polarizable continuum model. In water environment, the equilibrium position of K+ is at the center of the fullerene cavity whereas that of Li+ is shifted by 0.14 nm toward the fullerene cage. The Li+ cation is stabilized by interactions with both the fullerene and solvent. The equilibrium structures of both endohedral metallofullerenes are characterized by very close ΔG s values. In particular, the calculated ΔG s values for K+@C60 are in the range from −124 to −149 kJ mol−1 depending on the basis set and on the type of the density functional. Molecular dynamics simulations (TIP3P H2O, OPLS force field, water sphere of radius 1.9 nm) showed that the radial distribution functions of water density around C60 and M+@C60 are very similar, whereas orientations of water dipoles around the endohedral metallofullerenes resemble the hydration pattern of isolated metal ions.  相似文献   

18.
Results of measurements of the yield of Nd3+ radioluminescence photons in inorganic laser liquids POCl3-MCln-235UO 2 2+ -Nd3+ (M = Ti, Zr, Sn, or Sb) during homogeneous excitation by uranium α-particles are presented. It was found that the intensity of radioluminescence corresponding to the 4 F 3/24 I 11/2 transition in neodymium ions depends on the solvent composition. Data on the radiation-chemical yield, G, of excited neodymium ions in the POCl3-MCln-235UO 2 2+ -Nd3+ (M = Ti, Zr, Sn, or Sb) system were obtained. At a neodymium concentration of 0.25 mol/l, the values of G for the excited ions were 0.60 ± 0.10, 0.84 ± 0.10, 1.20 ± 0.10, and 1.64 ± 0.16 ion/100 eV in solutions with TiCl4, ZrCl4, SnCl4, and SbCl5, respectively. The maximum yields of excited ions estimated at G = 1.68 ± 0.10 and 2.20 ± 0.24 ion/100 eV were obtained for the solutions with SnCl4 and SbCl5, respectively, at neodymium ion concentrations above 0.4 mol/l.  相似文献   

19.
Gas-phase infrared photodissociation spectroscopy is reported for the microsolvated [Mn(ClO4)(H2O) n ]+ and [Mn2(ClO4)3(H2O) n ]+ complexes from n = 2 to 5. Electrosprayed ions are isolated in an ion-trap where they are photodissociated. The 2600–3800 cm−1 spectral region associated with the OH stretching mode is scanned with a relatively low-power infrared table-top laser, which is used in combination with a CO2 laser to enhance the photofragmentation yield of these strongly bound ions. Hydrogen bonding is evidenced by a relatively broad band red-shifted from the free OH region. Band assignment based on quantum chemical calculations suggest that there is formation of water—perchlorate hydrogen bond within the first coordination shell of high-spin Mn(II). Although the observed spectral features are also compatible with the formation of structures with double-acceptor water in the second shell, these structures are found relatively high in energy compared with structures with all water directly bound to manganese. Using the highly intense IR beam of the free electron laser CLIO in the 800–1700 cm−1, we were also able to characterize the coordination mode (η2) of perchlorate for two clusters. The comparison of experimental and calculated spectra suggests that the perchlorate Cl—O stretches are unexpectedly underestimated at the B3LYP level, while they are correctly described at the MP2 level allowing for spectral assignment.  相似文献   

20.
The reaction of [Cp*2RuBr]+Br with bromine in CH2Cl2 (CD2Cl2) in an inert atmosphere at room temperature produces the complexes [Cp*Ru(Br)C5Me4CH2Br]+Br3 (syn conformer), [Cp*Ru(Br)C5Me3(CH2Br)2]+ (syn and anti conformers), and [Ru(Br)(C5Me4CH2Br)2]+ (syn conformer). All complexes were characterized by 1H and 13C NMR spectroscopy; the former complex, by elemental analysis. These complexes were also prepared by the reaction of [Cp*RuC5Me4CH2]+BF4 with bromine in CH2Cl2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2712–2718, December, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号