首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The material formed by depositing C(2)(-) anions onto/into thin C(60) films (on graphite) at room temperature has been studied by means of thermal desorption mass spectroscopy, ultraviolet photoionization spectroscopy, atomic force microscopy (AFM), and surface enhanced Raman spectroscopy. As-prepared, C(2)/C(60) films manifest thermal desorption behaviour which differs significantly from pure C(60) films. Whereas the latter can be fully sublimed, we observe decomposition of C(2)/C(60) films to a high-temperature-stable material while predominantly C(60), C(62), and C(64) are desorbed in parallel. Deposition of C(2)(-) also leads to significantly modified electronic and vibrational properties. Based on DFT model calculations of the Raman spectra, we suggest that as-prepared C(2)/C(60) films contain appreciable amounts of polymeric networks comprising -C(2)-C(60)-C(2)-C(60)- chains. Detection of sublimed C(62) and C(64) upon heating implies that thermal decomposition of C(2)/C(60) films involves addition/uptake of C(2) units into individual fullerene cages. Correspondingly, annealing films up to various intermediate temperatures results in significant modifications to valence-band UP spectra as well as to surface topographies as imaged by AFM. The novel carbonaceous material obtained by heating to T > 950 K has a finite density of states at the Fermi level in contrast to as-prepared C(2)/C(60). It comprises fused fullerene cages.  相似文献   

2.
The electronic structure and bonding in the noncovalent, supramolecular complexes of fullerene C60 with a series of first-row transition metal porphines MP (M=Fe, Co, Ni, Cu, Zn) have been re-examined with DFT methods. A dispersion correction was made for the C60-MP binding energy through an empirical method (J. Comput. Chem. 2004, 25, 1463). Several density functionals and two types of basis sets were employed in the calculations. Our calculated results are rather different from those obtained in a recent paper (J. Phys. Chem. A 2005, 109, 3704). The ground state of C60.FeP is predicted to be high spin (S=2); the low-spin (S=0), closed-shell state is even higher in energy than the intermediate-spin (S=1) state. With only one electron in the Co-dz2 orbital, the calculated Co-C60 distance is in fact rather short, about 0.1 A longer than the Fe-C60 distance in high-spin C60.FeP. Double occupation of an M-dz2 orbital in MP prevents close association of any axial ligand, and so the Ni-C60, Cu-C60, and Zn-C60 distances are much longer than the Co-C60 one. The evaluated MP-C60 binding energies (Ebind) are 0.8 eV (18.5 kcal/mol) for M=Fe/Co and 0.5 eV (11.5 kcal/mol) for M=Ni/Cu/Zn (Ebind is about 0.2 eV larger in the case of C60-MTPP). They are believed to be reliable and accurate based on our dispersion-corrected DFT calculations that included the counterpoise (CP) correction. The effects of the C60 contact on the redox properties of MP were also examined.  相似文献   

3.
Metal-organic pyrogallol[4]arene nano-capsules, mixed pyrogallol[4]arene nano-capsules, and mixed metal analogues have been rapidly synthesised by addition of excess copper nitrate to a methanol solution of the corresponding macrocycle(s) (or gallium nano-capsules for the mixed metal system); improved solubility allows for thorough study and elucidation of the assembly process for these discrete metal-organic assemblies.  相似文献   

4.
Thermal reactions of [60]fullerene with amino acid ester hydrochlorides and triethylamine in o-dichlorobenzene at reflux afforded pyrrolidinofullerene derivatives containing the CH(3)CH moiety and originating from triethylamine through an unusual C-N bond cleavage. Detailed investigation of these thermal reactions resulted in the discovery of unprecedented reactions between C(60) and tertiary amines and of reactions of C(60) with tertiary amines and aldehydes, giving cyclopentafullerene derivatives with high stereoselectivity. Plausible reaction mechanisms for the product formation involving the uncommon C-N bond cleavage of tertiary amines were proposed on the basis of extensive experimental results.  相似文献   

5.
6.
The heat capacity of a crystal solvate of fullerene chloride, C60Cl30·0.09 Cl2, was measured by vacuum adiabatic calorimetry in the temperature range from (25 to 371.5) K. The thermodynamic functions (changes of the enthalpy, entropy, and Gibbs free energy) of C60Cl30·0.09 Cl2 have been derived. On the basis of obtained data and the enthalpy of formation of C60Cl30 determined before, the entropy and Gibbs free energy of formation of the fullerene chloride were calculated at T = 298.15 K.  相似文献   

7.
Transglutaminase (TGM)-2 is a ubiquitous protein with important cellular functions such as regulation of cytoskeleton, cell adhesion, apoptosis, energy metabolism, and stress signaling. We identified several proteins that may interact with TGM-2 through a discovery-based proteomics method via pull down of flag-tagged TGM-2 peptide fragments. The distribution of these potential binding partners of TGM-2 was studied in subcellular fractions separated by density using novel high-speed centricollation technology. Centricollation is a compressed air-driven, low-temperature stepwise ultracentrifugation procedure where low extraction volumes can be processed in a relatively short time in non-denaturing separation conditions with high recovery yield. The fractions were characterized by immunoblots against known organelle markers. The changes in the concentrations of the binding partners were studied in cells expressing short hairpin RNA against TGM-2 (shTG). Desmin, mitochondrial intramembrane cleaving protease (PARL), protein tyrosine kinase (NTRK3), and serine protease (PRSS3) were found to be less concentrated in the 8.5%, 10%, 15%, and 20% sucrose fractions (SFs) from the lysate of shTG cells. The Golgi-associated protein (GOLGA2) was predominantly localized in 15% SF fraction, and in shTG, this shifted to predominantly in the 8.5% SF and showed larger aggregations in the cytosol of cells on immunofluorescent staining compared to control. Based on the relative concentrations of these proteins, we propose how trafficking of such proteins between cellular compartments can occur to regulate cell function. Centricollation is useful for elucidating biological function at the molecular level, especially when combined with traditional cell biology techniques.  相似文献   

8.
The three-dimensional EHMO crystal orbital calculations for crystalline C60, Ca3C60, and Ca5C60 are reported. The ground states of both undoped solid C60 and partially doped Ca3C60 are found to be insulating with an indirect energy gap of 1.2 and 0.5 eV, respectively. In contrast, Ca5C60 forms a metallic conducting phase with a set of three half-filled bands crossing the Fermi level, which is found to be located close to a peak of the density of state. The character of crystal orbitals near the Fermi level for both Ca3C60 and Ca5C60 is completely carbonlike. In both cases, the Ca atoms are almost fully ionized and C60 molecules form a stable negative charge state with six to 10 additional electrons. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Optical spectroscopy and nanosecond flash photolysis (Nd:YAG laser, 355 nm, pulse duration 5 ns, mean energy 5 mJ/pulse) were used to study the photochemistry of Fe(III)(C2O4)3(3-) complex in aqueous solutions. The main photochemical process was found to be intramolecular electron transfer from the ligand to Fe(III) ion with formation of a primary radical complex [(C2O4)2Fe(II)(C2O4(*))](3-). The yield of radical species (i.e., CO2(*-) and C2O4(*-)) was found to be less than 6% of Fe(III)(C2O4)3(3-) disappeared after flash. [(C2O4)2Fe(II)(C2O4(*))](3-) dissociates reversibly into oxalate ion and a secondary radical complex, [(C2O4)Fe(II)(C2O4(*))](-). The latter reacts with the initial complex and dissociates to Fe(II)(C2O4) and oxalate radical. In this framework, the absorption spectra and rate constants of the reactions of all intermediates were determined.  相似文献   

10.
A SiC nanomesh is used as a nanotemplate to direct the epitaxy of C60 molecules. The epitaxial growth of C60 molecules on SiC nanomesh at room temperature is investigated by in situ scanning tunneling microscopy, revealing a typical Stranski-Krastanov mode (i.e., for the first one or two monolayers, it is a layer-by-layer growth or 2-D nucleation mode; at higher thicknesses, it changes to island growth or a 3-D nucleation mode). At submonolayer (0.04 and 0.2 ML) coverage, C60 molecules tend to aggregate to form single-layer C60 islands that mainly decorate terrace edges, leaving the uncovered SiC nanomesh almost free of C60 molecules. At 1 ML C60 coverage, a complete wetting layer of hexagonally close-packed C60 molecules forms on top of the SiC nanomesh. At higher coverage from 4.5 ML onward, the C60 stacking adopts a (111) oriented face-centered-cubic (fcc) structure. Strong bright and dim molecular contrasts have been observed on the first layer of C60 molecules, which are proposed to originate from electronic effects in a single-layer C60 island or the different coupling of C60 molecules to SiC nanomesh. These STM molecular contrast patterns completely disappear on the second and all the subsequent C60 layers. It is also found that the nanomesh can be fully recovered by annealing the C60/SiC nanomesh sample at 200 degrees C for 20 min.  相似文献   

11.
Goyal RN  Kaur D  Singh SP  Pandey AK 《Talanta》2008,75(1):63-69
A new method for the determination of salbutamol has been developed using fullerene C60-modified glassy carbon electrode and validated using GC-MS. The presence of graphite and metallic impurities in C60 are found to diminish the peak. The oxidation of salbutamol was observed in a single well-defined, diffusion-controlled process using square wave voltammetry. The peak potential of oxidation peak was dependent on pH and determination was carried out at physiological pH 7.4. The peak current versus concentration plot was linear in the range 100-2000 ng/ml of salbutamol. The detection limit was found to be 40 ng/ml. The determination of salbutamol was carried out in human blood and urine samples and common interferents such as dopamine, ascorbic acid and uric acid do not interfere. The method proved to be specific, rapid, and accurate and can be easily applied for detecting cases of doping. A cross-validation of the observed results with GC-MS indicated a good agreement.  相似文献   

12.
The reactivity of protein bound iron-sulfur clusters with nitric oxide (NO) is well documented, but little is known about the actual mechanism of cluster nitrosylation. Here, we report studies of members of the Wbl family of [4Fe-4S] containing proteins, which play key roles in regulating developmental processes in actinomycetes, including Streptomyces and Mycobacteria, and have been shown to be NO responsive. Streptomyces coelicolor WhiD and Mycobacterium tuberculosis WhiB1 react extremely rapidly with NO in a multiphasic reaction involving, remarkably, 8 NO molecules per [4Fe-4S] cluster. The reaction is 10(4)-fold faster than that observed with O(2) and is by far the most rapid iron-sulfur cluster nitrosylation reaction reported to date. An overall stoichiometry of [Fe(4)S(4)(Cys)(4)](2-) + 8NO → 2[Fe(I)(2)(NO)(4)(Cys)(2)](0) + S(2-) + 3S(0) has been established by determination of the sulfur products and their oxidation states. Kinetic analysis leads to a four-step mechanism that accounts for the observed NO dependence. DFT calculations suggest the possibility that the nitrosylation product is a novel cluster [Fe(I)(4)(NO)(8)(Cys)(4)](0) derived by dimerization of a pair of Roussin's red ester (RRE) complexes.  相似文献   

13.
The flavin-dependent sugar oxidoreductase pyranose dehydrogenase (PDH) from the plant litter-degrading fungus Agaricus meleagris oxidizes d-glucose (GLC) efficiently at positions C2 and C3. The closely related pyranose 2-oxidase (P2O) from Trametes multicolor oxidizes GLC only at position C2. Consequently, the electron output per molecule GLC is twofold for PDH compared to P2O making it a promising catalyst for bioelectrochemistry or for introducing novel carbonyl functionalities into sugars. The aim of this study was to rationalize the mechanism of GLC dioxidation employing molecular dynamics simulations of GLC–PDH interactions. Shape complementarity through nonpolar van der Waals interactions was identified as the main driving force for GLC binding. Together with a very diverse hydrogen-bonding pattern, this has the potential to explain the experimentally observed promiscuity of PDH towards different sugars. Based on geometrical analysis, we propose a similar reaction mechanism as in P2O involving a general base proton abstraction, stabilization of the transition state, an alkoxide intermediate, through interaction with a protonated catalytic histidine followed by a hydride transfer to the flavin N5 atom. Our data suggest that the presence of the two potential catalytic bases His-512 and His-556 increases the versatility of the enzyme, by employing the most suitably oriented base depending on the substrate and its orientation in the active site. Our findings corroborate and rationalize the experimentally observed dioxidation of GLC by PDH and its promiscuity towards different sugars.  相似文献   

14.
We report an in-depth study on meso-aryl nitration of tetraphenylporphyrin. In contrast to previous studies, new evidence reveals that tetrakis(p-nitrophenyl) derivative can be obtained as a major product. Successful isolation of the barely soluble product toward a remarkable yield of nearly 90% has been reached by means of a solid phase extraction technique. Distribution of different nitro-porphyrin components is reassessed with respect to varying acid content in the reactions. An ortho-effect model is proposed to describe the formation mechanism.  相似文献   

15.
Recent years have witnessed a tremendous explosion in computational power, which in turn has resulted in great progress in the complexity of the biological and chemical problems that can be addressed by means of all-atom simulations. Despite this, however, our computational time is not infinite, and in fact many of the key problems of the field were resolved long before the existence of the current levels of computational power. This review will start by presenting a brief historical overview of the use of multiscale simulations in biology, and then present some key developments in the field, highlighting several cases where the use of a physically sound simplification is clearly superior to a brute-force approach. Finally, some potential future directions will be discussed.  相似文献   

16.
In this paper water-soluble fullerene derivative C60(OH)xOy was radioiodinated with the iodogen method. The labeling yield was determined by radio-TLC. The effects of pH value, reaction time, temperature and amount of the iodogen on the labeling yield were studied. The labeled product was purified by Sephadex G-25 column chromatography and then the stability of 125I-C60(OH)xOy was examined . The results showed that the radiochemical purity of 125I-C60(OH)xOy solution with benzylalcohol remained 82.7% after 43 hours.  相似文献   

17.
Photo-ionisation and -fragmentation ofC 60 by 15 ns excimer laser pulses at 308 nm and 193 nm as well as 0.8 ps laser pulses at 193 nm has been studied with reflectron time-of-flight mass spectrometry. The initial fragmentation process is ejection ofC n,n>2, as opposed to successiveC 2 evaporation. Studies of the relative intensities of metastable fragmentation processes compared with direct fragmentation provide new insight into the fragmentation mechanism and provide a thermometer for the internal energy ofC 60 + prior to fragmentation. The proposed mechanism is in agreement with measurements of the fragment ion kinetic energies. The results are compared with molecular dynamics simulations.  相似文献   

18.
19.
C60的氧化反应研究   总被引:1,自引:0,他引:1  
在C60的甲苯或二氯苯溶液中通入O3,通过改变O3的吸收量及反应时间可得到两种氧化产物,一种产物在有机溶剂及水中均不溶,但经性水解后得到水溶性产物,其红外光谱与C60羟基化合物相似,在长时间通O3条件下,得到水溶性的C60氧化产物,用变温红外光谱、XPS、元素分析、热谱和质谱研究了氧化产物的可能结构,发现生成的C60氧化产物对热不稳定,随着温度升高,有CO2,CO和H2O放出。  相似文献   

20.
Reduction of the two "closed" [6,6] methanofullerenes, [6,6]C(61)H(2) (1) and [6,6]C(71)H(2) (5), to the corresponding hexaanions with lithium metal causes the bridgehead-bridgehead bonds to open, at least partially, and this change gives rise to diamagnetic ring currents in the resulting homoconjugated six-membered rings (6-MRs). These new ring currents shield the overlying hydrogen atoms on the methylene bridge and induce upfield shifts of 1.60 and 0.11 ppm in their (1)H NMR resonances, respectively. Analogous reduction of the already "open" [5,6]methanofullerenes, [5,6]C(61)H(2) (2) and [5,6]C(71)H(2) (3 and 4), only slightly enhances the shielding of the hydrogen atoms over the homoconjugated 6-MRs (upfield shifts of 0.13, 0.68, and 0.14 ppm, respectively) but leads to exceptionally strong diamagnetic ring currents in the homoconjugated five- membered rings (5-MRs), as evidenced by dramatic shielding of the hydrogen atoms situated over them (upfield shift of 5.01, 6.78, and 1.63 ppm, respectively). The strongest shielding is seen for the hydrogen atom sitting over the 5-MR at the pole of C(71)H(2)(6)(-) (delta = -0.255 ppm) indicating that the excess charge density is concentrated at the poles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号