首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light-absorption spectra of solutions of chromium(VI) in the form of dichromate (pH 1–5) and chromate (pH 7–9) have been studied. The solutions have maxima of light absorption at 360 and 380 nm and molar extinction coefficients of 155 ± 7 and 935 ± 27 for Cr2O 7 2? and Cr O 4 2? respectively. The chromaticity functions of these chromium(VI) forms have been investigated and it has been shown that they are 1.0–1.5 orders of magnitude higher than the molar extinction coefficients. In all cases, the yellowness is maximal.  相似文献   

2.
We report on a graphite electrode onto which polypyrrole was electrodeposited and then doped with chromate ion. This electrode can serve as a Cr(VI)-selective solid-state electrode. Electropolymerization of pyrrole was performed potentiostatically at 0.80?V (vs. SCE) using battery graphite as the working electrode in a solution containing 0.10?M of pyrrole and 20?mM of chromate. A platinum wire was used as an auxiliary electrode. The new electrode displays high selectivity, a very wide dynamic range, a sufficiently fast response time and a good shelf lifetime. It shows a linear Nernstian response over 1.0?×?10?6 to 1.0?×?10?1?M concentration range (with a slope of 26.55?±?0.20?mV per log of concentration). The detection limit is 0.5?μM, and the pH optimum is 7.0.
Figure
A highly selective solid state Cr(VI) ion-selective electrode based on polypyrrole conducting polymer was prepared. The introduced Cr(VI) micro sensor electrode exhibited linear response over a wide working concentration range with a high regression coefficient and a near Nernstian slope. The SEM image of PPy/CrO4 thin film shows unevenly distributed nanoparticles.  相似文献   

3.
A modified SBA-15 mesoporous silica was developed, as an adsorbent, for the removal of Cr(VI) ions from natural-water samples. The effects of experimental parameters, including pH of solution, sample and eluent flow rate, the eluent composition, the eluent volume, and the effect of coexisting ions on the separation and determination of Cr(VI), were investigated. It was shown that Cr(VI) was selectively adsorbed from aqueous solution at pH 3, but Cr(III) could be adsorbed from solution at alkaline pH range. The retained Cr(VI) was eluted with 0.5?mol?L?1 KCl solution in 0.1?mol?L?1 Na2CO3 subsequently. Under the optimum conditions, the modified mesoporous silica (py-SBA-15) with a high pore diameter exhibited an adsorption capacity of 136?mg?g?1 and a lower limit of detection than 2.3?µg?L?1 by using diphenylcarbazide as a chromophorous reagent for the determination of Cr(VI) ions. A preconcentration factor as high as 200 was calculated for Cr(VI). The loaded py-SBA-15 can be reactivated with recovery of more than 98.5% over at least eight cycles. The relative standard deviation (RSD) for Cr(VI) ion recovery was less than 1.8%. Validation of the outlined method was performed by analysing a certified reference material (BCR 544). The proposed method was applied to determine Cr(VI) value in natural and waste water samples successfully.  相似文献   

4.
Summary Synthetic Sorel's cement [3Mg(OH)2 . MgCl2 . 8H2O], is used as a new adsorbent material for removal of chromium(VI) ion from wastewater effluents. Parameters including contact time, adsorbent dosage and pH are examined and optimized. The equilibrium data are fitted very well to the Langmuir and Freundlich isotherms rather than linear. The adsorption isotherm indicates that the monolayer coverage is 21.4 mg Cr(VI) ion per g of Sorel's cement. The adsorbent is considered as a better replacement technology for removal of Cr(VI) ion from aqueous solutions due to its low cost, good efficiency, fast kinetics, and simple preparation. It offers remarkable efficiency for Cr(VI) removal from wastewater compared with many other natural and synthetic adsorbents.  相似文献   

5.
In the presence of traces of Cr(VI) or Cr(III) ions in ammonia or borate buffers containing the As(III) ions a catalytic hydrogen wave arises in the dc polarogram. It was established that the complex Cr(H2AsO3)n+3?n is formed in the solution, and that its reduced form adsorbed at DME is of catalytic activity. The wave can be employed for the determination of low concentrations (2×10?8×10?7M) of Cr(VI) and Cr(III) ions.  相似文献   

6.
Hydrogen peroxide at concentrations ?10?5 mol l?1 interferes in the spectrophotometric determination of chromium(VI) with dephenylcarbazide, because Cr(VI) is reduced to Cr(III) in acidic conditions. The interference depends on the H2O2 concentration and on the standing time between the additions of acid and diphenylcarbazide, and can be avoided (for ?0.4 mmol l?1 H2O2) by adding a larger amount of reagent before the acid. The latter observation suggests that storage of samples under acidic conditions could cause a decrease in Cr(VI) concentration.  相似文献   

7.
A dichromate‐selective PVC‐membrane electrode based on Quinaldine Red (an acridinium derivative) is described. The electrode exhibits rapid (< 30 s) and linear response to the activity of Cr(VI) anions in the range of 5.2 × 10?6 ?1.0 × 10?1 M dichromate with the limit of detection 2.5 × 10?6 Mof Cr2O72?. The sensor is used as an indicator electrode in potentiometric determination of Cr(VI) anions and is also suitable for end‐point indication in the titrations of proper metal ions with dichromate under laboratory conditions. The proposed electrode has been applied to the direct potentiometric determination of Cr(VI) anions in water samples with satisfactory results.  相似文献   

8.
Summary Chromium can be present in aqueous solution as Cr(VI) or in monomeric, dimeric, trimeric and higher polymeric forms of Cr(III). Many monomeric forms of Cr(III) are possible, with the water molecules of Cr(H2O) 6 3+ substituted by anionic or neutral species. This proliferation of Cr(III) species makes the complete speciation of chromium a continuing challenge to the analyst. A simple and effective cation exchange procedure for the separation of various of these species uses a small glass column containing 1 mL of pre-treated cation exchange resin (Na+ form). Stepwise elution with solutions of perchloric acid, Ca2+ (pH=2) and La3+ (pH=2) separates Cr(VI) and seven Cr(III) species from CrX3 to tetramer. Radiometric (Cr-51), spectrophotometric and other detection methods can be employed; the use of radiochromium gives the lowest detection limit.  相似文献   

9.
Optimization of electrocoagulation (EC) using copper electrode in terms of Cr(VI) removal from simulated waste water was executed by applying surface methodology and kinetic study. In this research, electrocoagulation process was applied to evaluate the outcome of operational parameters such as initial Cr(VI) concentration, pH, electrode distance, current density and supporting electrolyte (NaCl) concentration for the removal of Cr(VI). The experimental results showed that current density of 41.32 A/m2, electrode distance of 1.4 cm, initial pH of 5.65, time of electrocoagulation of 40 min and initial conductivity 0.21 ms are the optimal operating parameters to attain 93.33% removal efficiency of Cr(VI) ions from simulated waste water. The high value of R2 = 98.15 and R2adj = 96.49 show that fitted model confirms a good agreement with the real and predicted Cr(VI) removal percentage. It was concluded that Cr(VI) ion removal follows the first-order kinetic model by kinetic study of EC process.  相似文献   

10.
The effects of Cr(III) and Cr(VI) species (Cr2O72?, CrO42? and Cr3+) on the growth of Escherichia coli (E. coli) have been investigated in detail by microcalorimetry at 37 °C. Parameters including the growth rate constant (k), inhibitory ratio (I), half‐inhibitory concentration (IC50), total heat output (Qtotal), time of the maximum heat production (tlog) in the log phase have been obtained. The results showed that Cr(VI) and Cr(III) had the inhibition effect on the growth of E. coli in aquatic environment; however, the inhibitory ratio of Cr(III) to E. coli was smaller than that of Cr(VI). The k values of E. coli in the presence of Cr(VI) and at high concentrations of Cr(III) were decreased with increasing the concentrations of these chromium species. Among the three chromium species investigated, Cr2O72? was found to be the most poisonous species against E. coli with an IC50 value of 35.52 µg·mL?1. CrO42? exhibited moderate toxicity on E. coli with an IC50 of 50.24 µg·mL?1, and Cr3+ had the lowest toxicity with an IC50 of 84.30 µg·mL?1. Microcalorimetry can provide a convenient, sensitive and reliable method to study the effect of various metal species on the growth of bacteria or other microorganisms.  相似文献   

11.
Summary Electrophoresis followed by neutron activation analysis was utilized to determine chromium(III) and (VI) in mixed solutions. These solutions proceeded from Cr(VI) adsorbed hydrotalcites heated at 800 °C to partially immobilize Cr in the Mg-Al oxide solid solution. Immobilization was studied by Cr lixiviation with NaCl solutions through the heated hydrotalcites. The results have shown that Cr lixiviated was in the form of CrO42- ions, mainly because some Cr(VI) was not completely reduced to Cr(III) during heating. Chromium lixiviated from HT-Cr sample, heated at 800 °C and γ-irradiated at 1000 kGys, was found, as well, in the form of CrO42- ions. Although γ-irradiation increases Cr immobilization in the solid, it does not reduce completely all CrO42- ions present in the solid and, therefore, some Cr is lixiviated through the solid in the form of CrO42- ion.  相似文献   

12.
Chitosan-iron nanowires in porous anodic alumina (PAA) have been successfully prepared under ambient conditions as an adsorbent. The adsorbent was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and N2-BET surface area. The results showed that PAA can disperse and protect Fe0 nanorods from oxidation. The adsorption characteristics of trace Cr(VI) onto adsorbent have been examined at different initial Cr(VI) concentrations with pH 5. Batch adsorption studies show that the removal percentage of adsorbent for the removal of trace Cr(VI) is strongly dependent on the initial Cr(VI) concentrations. Langmuir and Freundlich isotherm models were used to analyze the experiment data. The adsorption of trace Cr(VI) by adsorbent is well modeled by the Langmuir isotherm and the maximum adsorption capacity of Cr(VI) is calculated as 123.95 mg/g which is very closed to the experiment results. Intraparticle diffusion study shows that the intraparticle diffusion of adsorbent is not the sole rate-controlling step. The negative value of Gibbs free energy change, ΔGo, indicated that the process of Cr(VI) onto adsorbent was spontaneous. This work has demonstrated that chitosan-iron nanowires in porous anodic alumina as an adsorbent has promising potential for heavy metal removal at trace level.  相似文献   

13.
Hexavalent chromium, a major contaminant in most wastewater sites, is a potential health threat inducing cancer to humans while trivalent chromium is an essential element for the metabolism of sugar. The radiation-induced reduction of Cr(VI) metal ion to Cr(III) by the perhydroxyl radical (HO2 ?) and carboxyl radical anion (CO2 ??) produced by continuous radiolysis of water was investigated by steady state radiolysis of O2, Ar and N2O-saturated pH 3 solutions in the presence of formate. In all cases the removed Cr(VI) was a linear function of the absorbed dose. The added formate was favorable for removing Cr(VI). Its presence protects the solution from reverse radiolytic oxidation of Cr(III) to Cr(VI). The measured and calculated yield of removal of Cr(VI) do agree quite well at low formate concentration but at high formate concentration the measured yield was higher than the expected. When all formate is exhausted no recovery of Cr(VI) from Cr(III) was observed in case of O2- and Ar-saturated solutions whilst in the case of N2O-saturated solutions Cr(VI) recovers. The results obtained in this study highlight the potential of this technology for industrial wastewater treatment.  相似文献   

14.
In assessing the environmental hazard of Cr(VI) present in soil, exchangeable Cr(VI) is important, since it can be easily washed out from the upper part of the soil into subsurface soil, surface and ground water, and taken up by plants. The aim of this study was to evaluate the degree of species interconversion that may occur during the extraction of exchangeable Cr(VI) from silty-clay soil with phosphate buffer in order to establish an extraction method that would be effective, accurate and with minimal or no species interconversions. The Cr(VI) concentration in soil extracts was determined by speciated isotope dilution inductively coupled plasma mass spectrometry (SID-ICP-MS). The study was performed on soil samples from a field treated with tannery waste for 17 years. Samples were spiked by enriched stable isotopic solutions of 50Cr(VI) and 53Cr(III) that were added to phosphate buffers (0.1 M KH2PO4-K2HPO4 (pH 7.2) and/or 0.1 M K2HPO4 (pH 8)). To optimize extraction, mechanical shaking and/or ultrasound-assisted extraction were compared. The separation and detection of Cr species was performed by high-performance liquid chromatography (HPLC) ICP-MS. When mechanical shaking was applied, 90 % reduction of Cr(VI) was induced by extraction with 0.1 M KH2PO4-K2HPO4, while with 0.1 M K2HPO4 reduction was around 40 %. To shorten the extraction time and the possibility of species interconversions, ultrasound-assisted extraction was further applied only with 0.1 M K2HPO4. For total extraction of exchangeable Cr(VI) with a maximum 10 % reduction of Cr(VI), five consecutive ultrasound-assisted extractions were needed.
Figure
?  相似文献   

15.
The effect of phenols on the ion-pair extraction of chromium(VI) as chromate anion (HCrO 4 ) with tetraphenylarsonium cation (TPA+) has been investigated. By using TPACl, chromate is extracted as an ion-pair, TPA+·HCrO 4 , into organic solvents, but its extractability into nonpolar solvents such as carbon tetrachloride is very low. The addition of several phenols greatly enhances the extractability, e.g., the distribution ratio of chromium(VI) between carbon tetrachloride and water rises 5500-fold in the presence of 0.020M 3,5-dichlorophenol in the organic phase. The enhancement was larger when using more acidic phenols and less polar solvents. From the analysis of the extraction data for the 3,5-dichlorophenol-carbon tetrachloride system, it was shown that one molecule of chromate is extracted together with one TPA+ and 1–3 phenol molecules and the extraction constants were determined. The UV spectrum indicated the extracted species including chromate ester to the TPA+·ArOCrO 3 ·mArOH (m=1,2).  相似文献   

16.
A sensitive and selective protocol for the extraction of all forms of Cr(VI) from solid materials followed by determination by catalytic adsorptive stripping voltammetry has been elaborated. Cr(VI) was leached to a solution with 0.2 mol L?1 (NH4)2SO4/NH4OH+0.1 mol L?1 EDDS (pH 9.5) and simultaneously Cr(III) was transferred to a nonactive electrochemical complex with EDDS. The method allows for Cr(VI) determination in solid samples containing even a 1000–2000 fold excess of extractable Cr(III) without its noticeable influence. The effects of several experimental variables such as the composition and pH of the extractant, the time and temperature of the solid sample mixing with the extractant were studied. At the optimized conditions more than 95% of total Cr(VI) recoveries from solid samples were achieved. The validation of the proposed procedure was carried out by Cr(VI) determination in certified reference material CRM 019 Ash, spiked and unspiked with Cr(III), and by comparing the obtained results with those obtained using other common extraction procedures.  相似文献   

17.
18.
Hydroxy-aluminum pillared Na-montmorillonite(OH–Al-MT) was prepared for studying sorption of U(VI) in the existence of soluble calcium (Ca2+), carbonate ion (CO32?) and humic acid. Various characterizations confirm that hydroxy-aluminum was successfully pillared into Na-montmorillonite (Na-MT). The effects of pH, concentration of Ca2+ and CO32? as well as HA on the sorption capacity of Na-MT and OH–Al-MT for U(VI) has been investigated by batch experiments. Additionally, the kinetics, isotherms and thermodynamics of adsorption of U(VI) were discussed in detailed. The study indicates that OH–Al-MT can be a potentially promising low-cost adsorbent for removal of U(VI) in wastewaters.  相似文献   

19.
Chromium speciation implies the quantitative determination of Cr(III) and Cr(VI). However, the presence of hydrolytic forms of Cr(III) and the instability of tracer level Cr(VI) in acid media complicates this speciation. The present work describes the stability of several monomeric Cr(III) species formed in the acid reduction of51Cr(VI). The distribution of Cr(VI) and Cr(X)n(H2O) 6–n (3–n)+ as a function of time was followed by paired cationic and anionic exchange analyses. The distributions and their time dependences are functions of the initial concentrations of both Cr(VI) and acid. The Cr(III) species eventually level to the hexaaquo form.  相似文献   

20.
Summary Trace amounts of Cr(VI) have been enriched from aqueous solutions by exchange of Cr(VI) on melamine-formaldehyde resin. The exchange capacity increased at lower pH-values. The material was used to preconcentrate Cr(VI) very efficiently from 0.1 g ml–1 solutions of chromate. After the Cr(VI) adsorbed on the column is eluted, it is analysed by atomic absorption spectroscopy and almost 100% recovery was achieved in every instance. The effect of other anions was examined and it was observed that the adsorption of Cr(VI) was not significantly affected by the presence of other anions.I dedicate this study to my supervisor, Prof. Dr. Huseyin Afsar  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号