首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the entanglement properties of bound states in an exactly soluble two-electron model, the Moshinsky atom. We present exact entanglement calculations for the ground, first and second excited states of the system. We find that these states become more entangled when the relative inter-particle interaction becomes stronger. As a general trend, we also observe that the entanglement of the eigenstates tends to increase with the states’ energy. There are, however, “entanglement level-crossings” where the entanglement of a state becomes larger than the entanglement of other states with higher energy. In the limit of weak interaction, we also compute (exactly) the entanglement of higher excited states. Excited states with anti-parallel spins are found to involve a considerable amount of entanglement even for an arbitrarily weak (but non zero) interaction. This minimum amount of entanglement increases monotonically with the state’s energy. Finally, the connection between entanglement and the Hartree-Fock approximation in the Moshinsky model is addressed. The quality of the ground-state Hartree-Fock approximation is shown to deteriorate, and the corresponding correlation energy to grow, as the entanglement of the (exact) ground state increases. The present work goes beyond previous related studies because we fully take into account the identical character of the two constituting particles in the entanglement calculations, and provide analytical, exact results both for the ground and the first few excited states.  相似文献   

2.
We study special relativistic effects on the entanglement between either spins or momenta of composite quantum systems of two spin- \frac12\frac{1}{2} massive particles, either indistinguishable or distinguishable, in inertial reference frames in relative motion. For the case of indistinguishable particles, we consider a balanced scenario where the momenta of the pair are well-defined but not maximally entangled in the rest frame while the spins of the pair are described by a one-parameter (η) family of entangled bipartite states. For the case of distinguishable particles, we consider an unbalanced scenario where the momenta of the pair are well-defined and maximally entangled in the rest frame while the spins of the pair are described by a one-parameter (ξ) family of non-maximally entangled bipartite states. In both cases, we show that neither the spin-spin (ss) nor the momentum-momentum (mm) entanglements quantified by means of Wootters’ concurrence are Lorentz invariant quantities: the total amount of entanglement regarded as the sum of these entanglements is not the same in different inertial moving frames. In particular, for any value of the entangling parameters, both ss and mm-entanglements are attenuated by Lorentz transformations and their parametric rates of change with respect to the entanglements observed in a rest frame have the same monotonic behavior. However, for indistinguishable (distinguishable) particles, the change in entanglement for the momenta is (is not) the same as the change in entanglement for spins. As a consequence, in both cases, no entanglement compensation between spin and momentum degrees of freedom occurs.  相似文献   

3.
We distinguish six classes of families of locally equivalent states in a straightforward scheme for classifying all 2–q-bit states; four of the classes consist of two subclasses each. The simple criteria that we stated recently for checking a given state’s positivity and separability are justified, and we discuss some important properties of Lewenstein–Sanpera decompositions. An upper bound is conjectured for the sum of the degree of separability of a 2–q-bit state and its concurrence. Received: 17 July 2000 / Published online: 6 December 2000  相似文献   

4.
The entanglement dynamics of two qubits coupled to a two-leg spin ladder with cyclic interaction is investigated. The entanglement is a periodic function of time and is affected by both the cyclic interaction in the ladder and the exchange interaction between the qubits and the ladder. If the number of spins in the ladder is increased with suitable external magnetic field, the maximum entanglement can exist for quite long time. Thus the entangled states can be stored and even can be “trapped” with high entanglement. The quantum manipulation of quantum states is possible in such systems.  相似文献   

5.
The Wigner function and the symplectic tomogram of an entangled quantum state, which is a superposition of the photon’s coherent states (even and odd coherent states), is studied. Photon statistics and violation of Bell’s inequality for the photon state are discussed.  相似文献   

6.
In this study, we investigate the phenomenon of distillability sudden death (DSD) for a two-qutrit system coupled to an XY spin chain. In virtue of the negativity and realignment criterion, we show that certain initial-prepared free entangled states may become bound entangled states in a finite time. The possibility of a DSD not only depends on the initial state parameter, but is also determined by the coupling between the two-qutrit system and the spin chain. The effects of other parameters related with the system and the spin chain (e.g., the total number of spins in the spin chain, strengths of the transverse field, and anisotropy parameter) on the time-determined bound entangled state are also investigated in detail. Accordingly, some effective methods of controlling the DSD are proposed.  相似文献   

7.
We consider the creation of polarization entangled light from parametric down-conversion driven by an intense pulsed pump field inside a cavity. The multiphoton states produced are close approximations to singlet states of two very large spins. A criterion is derived to quantify the entanglement of such states. We study the dynamics of the system in the presence of losses and other imperfections, concluding that the creation of strongly entangled states with photon numbers up to a million seems achievable.  相似文献   

8.
A three-level atom in a Λ configuration trapped in an optical cavity forms a basic unit in a number of proposed protocols for quantum information processing. This system allows for efficient storage of cavity photons into long-lived atomic excitations, and their retrieval with high fidelity, in an adiabatic transfer process through the ‘dark state’ by a slow variation of the control laser intensity. We study the full quantum mechanics of this transfer process with a view to examine the non-adiabatic effects arising from inevitable excitations of the system to states involving the upper level of Λ, which is radiative. We find that the fidelity of storage is better, the stronger the control field and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control field. Also, for retrieval, the behaviour with dissipation is non-monotonic. These results lend themselves to experimental tests. Our exact computations, when applied to slow variations of the control intensity for strong atom–photon couplings, are in very good agreement with Berry’s superadiabatic transfer results without dissipation.  相似文献   

9.
With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.  相似文献   

10.
Some entangled states have nonnegative Wigner representative function. The latter allow being viewed as a distribution function of local hidden variables. It is argued herewith that the interpretation of expectation values using such distribution functions as local hidden variable theory requires restrictions pertaining to the observables under study. The reasoning lead to support the view that violation of Bell’s inequalities that is always possible for entangled states hinges not only on the states involved but also whether the dynamical variables have their values defined even when they cannot be measured.  相似文献   

11.
C S Unnikrishnan 《Pramana》2002,59(2):295-301
I prove that there is no spooky action at a distance and nonlocal state-reduction during measurements on quantum entangled systems. The prediction of quantum theory as well as experimental results are in conflict with the concept of nonlocal state-reduction, as conclusively shown here under very general assumptions. This has far-reaching implications in the interpretation of quantum mechanics in general, and demands a radical change in its present interpretation of measurements on entangled multiparticle systems. Motivated by these results we re-examine Bell’s theorem for correlations of entangled systems and find that the correlation function used by Bell fails to incorporate phase correlations at source. It is the use of such an unphysical correlation function, and not failure of locality, that leads to the Bell’s inequalities.  相似文献   

12.
We investigate the possibility of transforming, under local operations and classical communication, a general bipartite quantum state on a dA x dB tensor-product space into a final state in 2 x 2 dimensions, while maintaining as much entanglement as possible. For pure states, we prove that Nielsens theorem provides the optimal protocol, and we present quantitative results on the degree of entanglement before and after the dimensional reduction. For mixed states, we identify a protocol that we argue is optimal for isotropic and Werner states. In the literature, it has been conjectured that some Werner states are bound entangled and in support of this conjecture our protocol gives final states without entanglement for this class of states. For all other entangled Werner states and for all entangled isotropic states some degree of free entanglement is maintained. In this sense, our protocol may be used to discriminate between bound and free entanglement.Received: 21 January 2004, Published online: 2 March 2004PACS: 03.67.Mn Entanglement production, characterization, and manipulation - 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements - 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bells inequalities, GHZ states, etc.)  相似文献   

13.
We present a method of generating two-mode single atom laser based on the nonresonant interaction of a three-level Λ type atom in a two-mode cavity with three strong classical driving fields. An analytical solution for this effective dynamics under the presence of the cavity losses is obtained, which allow us to analyze the entanglement properties and the photon statistics of the two cavity modes exactly. It is also shown that the possible generation of the two-mode entangled coherent states in the transient regime after the atomic measurement.  相似文献   

14.
Quantumness of the correlations between two qubits, coupled to a cavity field whenever the system is open or closed, is investigated when sudden death (or birth) of the entanglement occurs. It is found that quantum correlation not exists only in the entangled state. It’s found that the dephasing parameters and the purity of the initial states play an important role in the dynamics behaviors of the quantum correlations, including entanglement. Quantumness of the correlations and entanglement, due to dephasing of the cavity, are damped until the same their values which are contained in their initial states.  相似文献   

15.
A controlled quantum secure direct communication protocol (Zhang et al. in Int. J. Theor. Phys. 48:2971–2976, 2009) by using four particle cluster states was proposed recently. Yang et al. presented an attack with fake entangled particles (FEP attack) and gave an improvement (Yang et al. in Int. J. Theor. Phys. 50:395–400, 2010). In this paper, we reexamine the protocol’s security and discover that, Bob can also take a different attack, disentanglement attack, to obtain Alice’s secret message without controller’s permission. Moreover, our attack strategy also works for Yang’s improvement.  相似文献   

16.
Based on the classification of dynamic coordinates presented in Part 1 of this work and analogy with the classical systems constrained by nonholonomic coupling, Pfaff’s systems of turbulent dynamics are constructed. A method of constructing trajectory bundles for particles forming a vortex sheet is described. Thermodynamic interpretation of Pfaff’s coefficients is suggested.  相似文献   

17.
The ionization dynamics of two interacting Rydberg atoms in a strong laser field has been investigated. Each atom has been described in the “two discrete levels + continuum” model. Quasienergy states in this system, which describe field-dressed atoms, have been studied. It has been shown that one of the quasienergy states corresponds to the formation of an atomic state stable against ionization, which leads to the interference stabilization regime first observed in the case of individual atoms in [M. V. Fedorov and A. M. Movsesian, J. Phys. B 21, L155 (1988)]. Methods for creating entangled states in this system have been proposed and the dynamics of entanglement in the process of interaction with the laser field has been analyzed.  相似文献   

18.
We present a scheme for remotely preparing a general two-particle entangled state via two tripartite W entangled states of different amplitudes. In this scheme one sender and two remote receivers are involved. The sender can help either one of the receivers to remotely reconstruct the original state with the aid of the other receiver’s two single-particle orthogonal measurements. It is shown that by means of the method of the positive operator-valued measurement, our remote state preparation scheme can be achieved probabilistically. This project supported by the National Key Basic Research and Development Program of China under Grant No. 2006CB921604 and the National Natural Science Foundation of China under Grant Nos. 60578050 and 10434060.  相似文献   

19.
We consider the irreversible dynamics of two two-level atoms that interact with a bipartite broad-band electromagnetic field in an entangled state that forms a heat bath with a quantum correlation. Using Ito’s stochastic integration technique, we have derived a kinetic equation for atoms and found their steady state, which turns out to be inseparable and leads to a violation of Bell’s inequalities. The application of the atomic state found as a quantum channel for teleportation is considered. We have calculated the channel quality or fidelity that determines the possibilities for using the channel, in particular, characterizes its security. The process of teleportation by means of a quantum channel formed by an entangled heat bath is considered. Comparison of two (atomic and light) channels has shown that they have different properties with regard to separability and identical properties with regard to nonlocality. This means that nonlocality can be completely transferred from light to atoms.  相似文献   

20.
In the framework of the U q (su(2)) quantum algebra, we investigate the entanglement properties of two-spin systems, of arbitrary spins j 1 and j 2, defined in an entanglement of deformed spin coherent states of each of the spins. We derive the amount of entanglement and we give conditions under which bipartite entangled states become maximally entangled. Using these conditions, we construct a large class of Bell states for any choices of the parameters that specify the spin coherent states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号