首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complex of halothane (CF3CBrClH) with ([D3])methyl fluoride is investigated theoretically by means of ab initio calculations at the MP2/6‐311++G(d,p) level and experimentally by infrared spectroscopy of solutions in liquid krypton. The complexation energy is calculated to be ?12.5 kJ mol?1. The dipole moment of halothane monomer as a function of the C? H stretching coordinate is calculated with different methodologies and the value of (?μ/?Q1)0 is found to be positive. In the spectra, formation of a 1:1 complex is observed. The standard complexation enthalpy is measured to be ?8.4(2) kJ mol?1. The C? H stretching vibration of halothane shows a blueshift of +15.4 cm?1 on complexation, and its infrared intensity ratio εcomplex/εmonomer is found to be 1.39(7). The frequency shift is analyzed by a Morokuma analysis, and the infrared intensities are rationalized by using a model which includes the mechanical and electrical anharmonicity of the C? H stretching vibration.  相似文献   

2.
The formation of C-H···N bonded complexes of halothane with ammonia has been studied using infrared and Raman spectroscopy of solutions in the liquid rare gases argon, krypton and xenon, of supersonic jet expansions and of room temperature vapor phase mixtures. For the solutions and for the vapor phase experiments, the formation of complexes with 1:1 and 1:2 stoichiometry was observed. The complexation enthalpy for the 1:1 complex was determined to be -20 (1) kJ mol(-1) in the vapor phase, -17.0 (5) kJ mol(-1) in liquid xenon and -17.3 (6) kJ mol(-1) in liquid krypton. For the 1:2 complex in liquid xenon, the complexation enthalpy was determined to be -31.5 (12) kJ mol(-1). Using the complexation enthalpies for the vapor phase and for the solutions in liquid xenon and krypton, a critical assessment is made of the Monte Carlo Free Energy Perturbation approach to model solvent influences on the thermodynamical properties of the cryosolutions. The influences of temperature and solvent on the complexation shifts of the halothane C-H stretching mode are discussed.  相似文献   

3.
Infrared spectra of solutions of trifluoroethene and dimethyl ether, acetone, or oxirane in liquid krypton and liquid argon have been studied. For each Lewis base the formation of a 1:1 complex with the Lewis acid was observed. The C-H stretching of trifluoroethene being perturbed by a strong Fermi resonance, the complexes with trifuloroethene-d were also investigated and showed that in each case the hydrogen bond between the acid and base is of the traditional, red-shifting type. The structures of the complexes were investigated using ab initio calculations. These indicate that with dimethyl ether and acetone two different isomeres can be formed, but with a single one detected in the solution in each case. The Fermi resonance in the complex with unlabeled trifluoroethene is discussed using data derived form ab initio potential and dipole hypersurface calculations. The complexation enthalpies of the complexes were obtained from temperature dependent studies of the solutions and are discussed in relation to the ab initio complexation energies and Monte Carlo free energy perturbation calculations of solvent effects.  相似文献   

4.
Complexes of haloforms of the type HCCl(n)F(3-)(n) (n = 1-3) with dimethyl ether have been studied in liquid argon and liquid krypton, using infrared spectroscopy. For the haloform C[bond]H stretching mode, the complexation causes blue shifts of 10.6 and 4.8 cm(-1) for HCClF(2) and HCCl(2)F, respectively, while for HCCl(3) a red shift of 8.3 cm(-1) is observed. The ratio of the band areas of the haloform C[bond]H stretching in complex and monomer was determined to be 0.86(4) for HCClF(2), 33(3) for HCCl(2)F, and 56(3) for HCCl(3). These observations, combined with those for the HCF(3) complex with the same ether (J. Am. Chem. Soc. 2001, 123, 12290), have been analyzed using ab initio calculations at the MP2[double bond]FC/6-31G(d) level, and using some recent models for improper hydrogen bonding. Ab initio calculations on the haloforms embedded in a homogeneous electric field to model the influence of the ether suggest that the complexation shift of the haloform C[bond]H stretching is largely explained by the electric field effect induced by the electron donor in the proton donor. The model calculations also show that the electric field effect accounts for the observed intensity changes of the haloform C[bond]H stretches.  相似文献   

5.
Using FTIR and Raman spectroscopy, the formation of halogen bonded complexes of the trifluorohalomethanes CF(3)Cl, CF(3)Br and CF(3)I with dimethyl sulfide (DMS) dissolved in liquid krypton has been investigated. For CF(3)Br and CF(3)I, evidence was found for the formation of C-XS halogen bonded 1:1 complexes. At higher concentrations of CF(3)I weak absorptions due to a 2:1 complex were also observed. Using spectra recorded at temperatures between 118 and 163 K, the complexation enthalpies for the complexes were determined to be -9.5(5) kJ mol(-1) for CF(3)Br·DMS, -17.4(1) kJ mol(-1) for CF(3)I·DMS and -30.8(16) kJ mol(-1) for (CF(3)I·)(2)DMS. The results from the cryospectroscopic study are compared with ab initio calculations at the MP2/aug-cc-pVDZ(-PP) level. Apart from vibrational modes localized in the trifluorohalomethanes and the DMS moieties, for both CF(3)Br and CF(3)I, an additional band, which we assign as the intermolecular stretching mode in the complex, was identified in the infrared and Raman spectra.  相似文献   

6.
The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded complex of phenol with four water molecules PhOH...(H2O)4 (structure 4A) have been predicted using ab initio and DFT (B3LYP) calculations with 6-31G(d,p) basis set. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and B3LYP calculations show that the observed four intense bands at 3299, 3341, 3386 and 3430 cm(-1) can be assigned to the hydrogen-bonded OH stretching vibrations in the complex PhOH...(H2O)4 (4A). The complexation leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The predicted red shifts for these vibrations with B3LYP/6-31G(d,p) calculations are in very good agreement with the experimentally observed. It was established that the phenolic OH stretching vibration is the most sensitive to the hydrogen bonding. The predicted red-shift with the B3LYP/6-31G(d,p) calculations for the most stable ring structure 4A (-590 cm(-1)) is in better agreement with the experimentally observed than the red-shift, predicted with SCF/6-31G(d,p) calculations. The magnitude of the wavenumber shift is indicative of relatively strong OH...H hydrogen-bonded interaction. The complexation between phenol and four water molecules leads to strong increase of the IR intensity of the phenolic OH stretching vibration (up to 38 times).  相似文献   

7.
The rotational spectra for five isotopomers of the 1:1 weakly bound complex formed between dimethyl ether (DME) and acetylene (HCCH) have been measured by Fourier transform microwave spectroscopy. The experimental rotational constants, planar moments, and dipole moment components are consistent with a floppy complex possessing an effective C2v structure in which the hydrogen atom of acetylene is hydrogen bonded to the oxygen atom of dimethyl ether with an intermolecular H...O separation of 2.08(3) A. Experimental rotational constants for the normal isotopic species are A = 10382.5(17) MHz, B = 1535.7187(18) MHz, and C = 1328.3990(17) MHz and the dipole moment components are mua= mutotal = 1.91(10) D. Ab initio calculations at the MP2/6-311++G(2d,2p) level indicate that the energy barrier for motion of the HCCH subunit between the lone pairs of the DME, via a C2v intermediate structure, is very low (approximately 0.29 kJ mol(-1)). Inclusion of basis set superposition error and zero point energy corrections to the energies of four stationary points located on the potential energy surface shows that the relative stabilities are particularly sensitive to these corrections. The ab initio optimizations give rotational constants for the C2v structure of A = 10066 MHz, B = 1496 MHz, and C = 1324 MHz, and a dipole moment of mua= mu(total) = 2.12 D, in reasonable agreement with the experimentally determined values. The structural parameters and energetics of the DME-HCCH complex will be discussed and compared to similar complexes such as H2O-HCCH.  相似文献   

8.
Complexation enthalpies of the complexes of the haloforms HCCl(n)F(3-)(n) (n = 0-3) with dimethyl ether, oxirane, and acetone have been determined in liquid krypton and/or liquid argon using infrared spectroscopy. The same quantities were derived starting from ab initio complexation energies, calculated at the MP2=FULL/aug-cc-VTZ level, and by correcting these energies for thermodynamic and solvent contributions. The two sets of data are compared and discussed.  相似文献   

9.
Fourier transform ion cyclotron resonance mass spectrometry has been used to study the temperature and deuterium isotope effects on the methyl cation transfer reaction between protonated dimethyl ether and dimethyl ether to produce trimethyloxonium cation and methanol. From the temperature dependence of this bimolecular reaction it was possible to obtain thermodynamic information concerning the energy barrier for methyl cation transfer for the first time. From the slope of an Arrhenius plot, a value for DeltaH(++) of -1.1 +/- 1.2 kJ mol(-1) was obtained, while from the intercept a value for DeltaS(++) of -116 +/- 15 J K(-1) mol(-1) was derived. This yields a DeltaG(++)(298) value of 33.7 +/- 2.1 kJ mol(-1). All thermodynamic values were in good agreement with ab initio calculations. Rate constant ratios for the unimolecular dissociation forming trimethyloxonium cation and the dissociation re-forming reactants were extracted from the apparent bimolecular rate constant. Attempts at modeling the temperature dependence and isotope effects of the unimolecular dissociation forming trimethyloxonium cation were also made.  相似文献   

10.
The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C (L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d,p) calculations and DFT (BLYP) calculations with 6-31G(d,p) and 6-31++G(d,p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm(-1). The magnitude of the wavenumber shifts is indicative of relatively strong OH...H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric OH stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.  相似文献   

11.
Using FTIR and Raman spectroscopy, the formation of halogen bonded complexes of the trifluorohalomethanes CF(3)Cl, CF(3)Br and CF(3)I with ethene and propene dissolved in liquid argon has been investigated. For CF(3)Br and CF(3)I, evidence was found for the formation of C-X···π halogen bonded 1:1 complexes. At a higher ratio of CF(3)I/propene, weak absorptions due to a 2:1 complex were also observed. Using spectra recorded at different temperatures, the complexation enthalpies for the complexes were determined to be -5.3(2) kJ mol(-1) for CF(3)Br·ethene, -7.5(2) kJ mol(-1) for CF(3)I·ethene, -5.6(1) kJ mol(-1) for CF(3)Br·propene, -8.8(1) kJ mol(-1) for CF(3)I·propene and -16.5(6) kJ mol(-1) for (CF(3)I·)(2)propene. The complexation enthalpies of the hydrogen bonded counterparts, with CF(3)H as the Lewis acid, were determined to be -4.6(4) kJ mol(-1) for CF(3)H·ethene and -5.1(2) kJ mol(-1) for CF(3)H·propene. For both hydrogen bonded complexes, a blue shift, by +4.8 and +4.0 cm(-1), respectively, was observed for the C-H stretching mode. The results from the cryospectroscopic study are compared with ab initio calculations at the MP2/aug-cc-pVDZ(-PP) level.  相似文献   

12.
The infrared spectrum of methyl tert-butyl ether (MTBE) in liquid water has been studied using both FTIR absorption and FTIR-ATR spectroscopy in conjunction with ab initio calculations. Compared to the liquid MTBE IR spectrum, the C-O and C-C stretching vibrational frequencies of MTBE in water are found to shift to the red and blue by up to 26 and 9 cm (-1), respectively. Ab initio calculations suggest that these shifts are caused by complexation of the MTBE molecule with water molecules through hydrogen bonding. Our observation of the vibrational frequency shifts in the IR spectrum of MTBE in water provides the IR spectroscopic evidence of organics-water complexes in the diluted aqueous solution. The implication of the effect of the hydrogen bond in organics-water complexation on solvation and reactivity of the organic compound in aqueous chemical processes is discussed.  相似文献   

13.
The structure, stability and vibrational spectrum of the binary complex between HONO2 and H2O have been investigated using ab initio calculations at SCF and MP2 levels with different basis sets and B3LYP/6-31G(d,p) calculations. Full geometry optimization was made for the complex studied. It was established that the hydrogen-bonded H2O...HONO2 complex has a planar structure. The corrected values of the dissociation energy at the SCF and MP2 levels and B3LYP calculations are indicative of relatively strong OH...O hydrogen-bonded interaction. The changes in the vibrational characteristics (vibrational frequencies and infrared intensities) arising from the hydrogen bonding between HONO2 and H2O have been estimated by using the ab initio calculations at SCF and MP2 levels and B3LYP/6-31G(d,p) calculations. It was established that the most sensitive to the complexation is the stretching O-H vibration from HONO2. In agreement with the experiment, its vibrational frequency in the complex is shifted to lower wavenumbers. The predicted frequency shift with the B3LYP/6-31G(d,p) calculations (-439 cm(-1)) is in the best agreement with the experimentally measured (-498 cm(-1)). The intensity of this vibration increases dramatically upon hydrogen bonding. The ab initio calculations at the SCF level predict an increase up to five times; at the MP2 level up to 10 times and the B3LYP/6-31G(d,p) predicted increase is up to 17 times. The good agreement between the predicted values of the frequency shifts and those experimentally observed show that the structure of the hydrogen-bonded complex H2O...HONO2 is reliable.  相似文献   

14.
The adsorption of ammonia at various active centers at the outer and inner surfaces of mordenite, involving Br?nsted acid (BA) sites, terminal silanol groups, and Lewis sites has been investigated using periodic ab initio density-functional theory. It is shown that ammonia forms an ammonium ion when adsorbed at strong BA sites. The calculated adsorption energies for different BA sites vary in the interval from 111.5 to 174.7 kJ/mol depending on the local environment of the adduct. The lowest adsorption energy is found for a monodentate complex in the main channel, the highest for a tetradentate configuration in the side pocket. At weak BA sites such as terminal silanol groups or a defect with a BA site in a two-membered ring ammonia is H bonded via the N atom. Additional weak H bonds are formed between H atoms of ammonia and O atoms of neighboring terminal silanol groups. The calculated adsorption energies for such adducts range between 61.7 and 70.9 kJ/mol. The interaction of ammonia with different Lewis sites is shown to range between weak (DeltaE(ads)=17.8 kJ/mol) and very strong (DeltaE(ads)=161.7 kJ/mol), the strongest Lewis site being a tricoordinated Al atom at the outer surface. Our results are in very good agreement with the distribution of desorption energies estimated from temperature-programmed desorption (TPD) and microcalorimetry experiments, the multipeaked structure of the TPD spectra is shown to arise from strong and weak Br?nsted and Lewis sites. The vibrational properties of the adsorption complexes are investigated using a force-constant approach. The stretching and bending modes of NH(4) (+) adsorbed to the zeolite are strongly influenced by the local environment. The strongest redshift is calculated for the asymmetric stretching mode involving the NH group hydrogen bonded to the bridging O atom of the BA site, the shift is largest for a monodentate and smallest for a tetradentate adsorption complex. The reduced symmetry of the adsorbate also leads to a substantial splitting of the stretching and bending modes. In agreement with experiment we show that the main vibrational feature which differentiates coordinatively bonded ammonia from a hydrogen-bonded ammonium ion is the absence of bending modes above 1630 cm(-1) and in the region between 1260 and 1600 cm(-1), and a low-frequency bending band in the range from 1130 to 1260 cm(-1). The calculated distribution of vibrational frequencies agrees very well with the measured infrared adsorption spectra. From the comparison of the adsorption data and the vibrational spectra we conclude that due to the complex adsorption geometry the redshift of the asymmetric stretching is a better measure of the acidity of an active sites than the adsorption energy.  相似文献   

15.
Photolysis (193 nm) of propiolic acid (HCCCOOH) was studied with Fourier transform infrared spectroscopy in noble-gas (Ar, Kr, and Xe) solid matrixes. The photolysis products were assigned using ab initio quantum chemistry calculations. The novel higher-energy conformer of propiolic acid was efficiently formed upon UV irradiation, and it decayed back to the ground-state conformer on a time scale of approximately 10 min by tunneling of the hydrogen atom through the torsional energy barrier. In addition, the photolysis produced a number of matrix-isolated 1:1 molecular complexes such as HCCH...CO2, HCCOH...CO, and H2O...C3O. The HCCH...CO2 complex dominated among the photolysis products, and the computations suggested a parallel geometry of this complex characterized by an interaction energy of -9.6 kJ/mol. The HCCOH...CO complex also formed efficiently, but its concentration was strongly limited by its light-induced decomposition. In this complex, the most probable geometry was found to feature the interaction of carbon monoxide with the OH group via the carbon atom, and the computational interaction energy was determined to be -18.3 kJ/mol. The formation of the strong H2O...C3O complex (interaction energy -21 kJ/mol) was less efficient, which might be due to the inefficiency of the involved radical reaction.  相似文献   

16.
The structure, energetics, and vibrational properties of complexes formed between H2S and CO have been investigated by matrix isolation FTIR spectroscopy and ab initio molecular orbital theory. Two stable computational minima were found representing nearly linear hydrogen bonds between the subunits. The H2S---CO and H2S---OC species were calculated to be bound by 5.22 and 1.54 kJ mol−1, respectively. The computational results were reproduced by experimental assignments for the carbon attached complex. The stretching vibrations of the complex subunits were found to be similarly perturbed upon complexation both experimentally and computationally.  相似文献   

17.
Ab initio conformers and dimers have been computed at RHF and B3LYP/6-31G* levels for isomers 2-chloro-3-hydroxybenzaldehyde and 3-chloro-4-hydroxybenzaldehyde to explain the observed infrared absorption and Raman vibrational spectral features in the region 3500-50 cm(-1). The position of the chlorine in ortho position with respect to aldehyde group in 2-chloro-3-hydroxybenzaldehyde yields four distinct conformers; whereas the chlorine in meta position in 3-chloro-4-hydroxybenzaldehyde yields effectively only three conformers. Major spectral features as strong absorptions near 3160-80 cm(-1), down-shifting of the aldehydic carbonyl stretching mode and up-shifting of hydroxyl group's in-plane bending mode are explained using ab initio evidence of O-H?O bond-aided dimerization between the most stable conformers of each molecule. Absorption width of about 700 cm(-1) (~8.28 kJ/mol) of O-H stretching modes suggests a strong hydrogen bonding with the ab initio bond lengths, O-H?O in the range of 2.873-2.832 ?. A strong Raman mode near 110-85 cm(-1) in each molecule is interpreted to be coupled vibrations of pseudo-dimeric trans and cis structures.  相似文献   

18.
An ab initio computational study of the properties of four linear dihydrogen-bonded complexes pairing MH2 (M = Zn, Cd) with HCCRgF (Rg = Ar, Kr) was undertaken at the MP2/DGDZVP level of theory. The calculated complexation energies of the linear complexes vary between 6.5 kJ/mol for M = Zn to 8.5 kJ/mol for M = Cd. Equilibrium interatomic H...H distances are roughly 2.07 A for all four complexes. The red shifts of the H-C stretching frequency of HCCRgF correlate nicely with the interaction energies.  相似文献   

19.
The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded systems of nicotinamide (NA(Z) and NA(E)) with dimethyl sulfoxide (DMSO) have been predicted using ab initio SCF/6-31G(d,p) and DFT (BLYP/6-311++G(d,p)) calculations. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between nicotinamide (NA(Z) and NA(E)) and DMSO leads to large red shifts of the stretching vibrations for the hydrogen-bonded N-H bonds of nicotinamide and very strong increase in their IR intensity. The results from the BLYP/6-311++G(d,p) calculations show that the predicted red shifts of the nu(s)(NH) and nu(as)(NH) vibrations for the complex NA(E)-DMSO (1:2) (Deltanu(as)(NH)=-186 cm(-1) and Deltanu(s)(NH)=-198 cm(-1)) are in better agreement with the experimentally measured. The magnitudes of the wavenumber shifts are indicative of strong NH...O hydrogen-bonded interactions in both complexes. The calculations predict an increase of the IR intensity of nu(s)(NH) and nu(as)(NH) vibrations in the complexes up to 14 times. Having in mind that in more cases the predicted changes in the vibrational characteristics for the complexes studied are very near, it could be concluded that both conformers of nicotinamide, Z-conformer and E-conformer, are present in the solution forming the hydrogen-bonded complexes with DMSO.  相似文献   

20.
用从头计算方法在MP2 /6 31G(d)水平上研究了CX2 (X =H ,F ,Cl)与甲基异丙基醚的C -H键插入反应。CCl2 与甲基异丙基醚两个不同的α C的C -H键插入势垒分别为 117.2kJ/mol (甲基 )和 2 0 .6kJ/mol (异丙基 )。CF2 与异丙基α C的C -H键上插入势垒为 12 0 .0kJ/mol,在插入甲基上C -H键时会引起C -O键的断裂。CH2 的插入反应则不需要势垒。对CX2 与二甲醚、甲乙醚、甲基异丙基醚、甲基苄基醚上各种不同的C -H键插入势垒进行了比较 ,甲基和苯基都促使其毗邻的C -H键更容易被CX2 所插入  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号