首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new po1y(acrylphenylamidrazone phenylhydrazide) chelating fiber is synthesized from polyacrylonitrile fiber and used for preconcentration and separation of trace Ga(III), In(III), Bi(III), V(V) and Ti(IV) from solution (5–50 ng ml−1 Ti(IV) or V(V) and 50–500 ng ml−1 Ga(III), In (III) or Bi(III) in 1000–100 ml of solution can be enriched quantitatively by 0.15 g of fiber at a 4 ml min−1 flow rate in the pH range 5–7 with recoveries >95%). These ions can be desorbed quantitatively with 20 ml of 4 M hydrochloric acid at 2 ml min−1 from the fiber column. When the fiber which had been treated with concentrated hydrochloric acid and washed with distilled water until neutral was reused eight times, the recoveries of the above ions by enrichment were still >95%. Two-hundred-fold to 10 000-fold excesses of Cu(II), Zn(II), Ca(II), Mn(II), Cr(III), Fe(III), Ba(II) and Al(III) caused little interference in the determination of these ions by inductively coupled plasma-atomic emission spectrometers (ICP-AES). The relative standard deviations for enrichment and determination of 50 ng ml−1 Ga, In or Bi and 10 ng ml−1 V or Ti are in the range 1.2–2.7%. The contents of these ions in real solution samples determined by this method were in agreement with the certified values of the samples with average errors <3.7%.  相似文献   

2.
Polystyrene–divinylbenzene (8%) has been functionalised by coupling it through an ---N=N--- group with 6-mercaptopurine. The resulting chelating resin has been characterised by using elemental analysis, thermogravimetric analysis and infrared spectra. The resin is highly selective for Hg(II) and Ag(I) and has been used for preconcentrating Hg(II) and Ag(I) prior to their determination by atomic absorption spectrometry. The maximum sorption capacity for Hg(II) and Ag(I) was found to be 1.74 and 0.52 mmol g−1, respectively, over the pH range 5.5–6.0. The calibration range for Hg(II) was linear up to 10 ng ml−1 with a 3σ detection limit of 0.02 ng ml−1; the calibration range for Ag(I) was linear up to 5 μg ml−1 with a detection limit of 29 ng ml−1. The recoveries of the metals were found to be 99.7±3.8 and 101.3±4.1% at the 95% confidence level for both Hg(II) and Ag(I). In column operation, it has been observed that Hg(II) and Ag(I) in trace quantities can be selectively separated from geological, medicinal and environmental samples.  相似文献   

3.
Fan Z 《Talanta》2006,70(5):1164-1169
Hg(II)-imprinting thiol-functionalized mesoporous sorbent was prepared by a sol–gel method and characterized by X-ray diffraction (XRD), FT-IR spectroscopy and nitrogen gas adsorption–desorption. The static adsorption capacity of the Hg(II)-imprinted and non-imprinted sorbent was 78.5 and 26.6 mg g−1, respectively. The breakthrough capacity was 4.46 mg g−1, and the relative selectivity coefficient for Hg(II) in the presence of Cd and Pb was 3.3 and 3.9, respectively. A new method using a micro-column packed with Hg(II)-imprinting thiol-functionalized mesoporous sorbent has been developed for preconcentration of trace mercury prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analyte have been investigated. The limit of detection was 0.39 ng ml−1 with a concentration factor of 150 times. The developed method has been applied to the determination of trace mercury in some biological and environmental samples with satisfactory results. The accuracy was assessed through recovery experiments and analysis of certified reference material.  相似文献   

4.
Solid-phase spectrophotometry (SPS) technique, in the visible region, was used for the spectrophotometric determination of ascorbic acid based on the reducing effect on iron(III) ion, followed by formation of the iron(II)-ferrozine chelate. The chelate is easily sorbed on a dextran-type anion-exchange gel and the absorbance of the resin at 567 and 800 nm, packed in a 1 mm cell, is measured directly. The apparent molar absorptivity using 100 ml of sample was 2.1×107 l mol−1 cm−1 and it allowed the determination of ascorbic acid in the range 5–90 ng ml−1; the detection limit was 0.91 ng ml−1 and the RSD 0.91% for a concentration of 50 ng ml−1 of ascorbic acid (n=10). The proposed method permits a highly sensitive and selective determination of ascorbic acid without any preconcentration and it has been satisfactorily applied for its determination in fruit juices, pharmaceuticals, urine and conservative liquids.  相似文献   

5.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

6.
Ruengsitagoon W 《Talanta》2008,74(5):1236-1241
A simple reversed flow injection colourimetric procedure for determining iron(III) was proposed. It is based on the reaction between iron(III) with chlortetracycline, resulting in an intense yellow complex with a suitable absorption at 435 nm. A 200 μl chlortetracycline reagent solution was injected into the phosphate buffer stream (flow rate 2.0 ml min−1) which was then merged with iron(III) standard or sample in dilute nitric acid stream (flow rate 1.5 ml min−1). Optimum conditions for determining iron(III) were investigated by univariate method. Under the optimum conditions, a linear calibration graph was obtained over the range 0.5–20.0 μg ml−1. The detection limit (3σ) and the quantification limit (10σ) were 0.10 and 0.82 μg ml−1, respectively. The relatives standard deviation of the proposed method calculated from 12 replicate injections of 2.0 and 10.0 μg ml−1 iron(III) were 0.43 and 0.59%, respectively. The sample throughput was 60 h−1. The proposed method has been satisfactorily applied to the determination of iron(III) in natural waters.  相似文献   

7.
Flow injection determination of nitrite by fluorescence quenching   总被引:2,自引:0,他引:2  
A simple, sensitive and selective fluorimetric method for the determination of nitrite ion in waters using a merging zones flow injection system is described. The fluorimetric determination is based on the measurement of the quenching effect produced by nitrite on proflavine (3,6-diaminoacridine) fluorescence (λexem=290/519 nm).

The optimum experimental conditions were investigated by merging 0.5 ml of the sample and 0.5 ml of a solution of 5 mg l−1 of proflavine (in 0.1 M HCl) in a flow injection system, on-line connected to a flow-cell placed in the conventional sample compartment of a spectrofluorimeter. The selected carrier solution and final flow rate were 0.1 M HCl and 0.5 ml min−1, respectively. A reaction coil of 2 ml was used. As a result of the simplicity of this system, a sample throughput of about 50 samples h−1 can be achieved with the proposed methodology.

The detection limit was 1.1 ng ml−1 (3σ criterion) of nitrite. The repeatability for five sample injections containing 100 ng ml−1 of nitrite was ±0.3% and the observed linear range extended up to 400 ng ml−1. Also, the effect of interferences from various metals and anions commonly present in waters was also studied.

The method was successfully applied to the determination of low levels of nitrite in different water samples (river, fountain, tap and commercial drinking waters).  相似文献   


8.
A sequential injection analysis (SIA) spectrophotometric method for the determination of trace amounts of zinc(II) with 1-(2-pyridylazo)-2-naphthol (PAN) is described. The method is based on the measurement of absorbance of the zinc(II)–PAN chelate solubilized with a non-ionic surfactant, Triton X-100, no extraction procedure is required in the proposed method, yielding a pink colored complex at pH 9.5 with absorption maximum at 553 nm. The SIA parameters that affect the signal response have been optimized in order to get the better sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and concentration was obtained in the concentration range of 0.1–1.0 μg ml−1. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.02 and 0.06 μg ml−1, respectively. The sample throughput about 40 samples/h was obtained. The repeatability were 1.32 and 1.24% (n = 10) for 0.1 and 0.5 μg ml−1, respectively. The proposed method was successfully applied to the assay of zinc(II) in three samples of multivitamin tablets. The results were found to be in good agreement with those obtained by flame atomic absorption spectrophotometric method and with the claimed values by the manufactures. The t-test showed no significant difference at 95% confidence level.  相似文献   

9.
For the first time a new, sensitive, and simple bead injection spectroscopy–flow injection analysis (BIS–FIA) system with spectrofluorimetric detection is described for the sequential determination of two metals. The sensor is based on the alternate use of two carriers and a commercially available flow cell (Hellma 176-QS). The flow cell is filled by injecting in the flow system 500 μl of a homogeneous bead suspension of an appropriate solid support (Sephadex QAE A-25) previously loaded with the fluorogenic reagent morin (2′,3,4′,5,7-pentahydroxyflavone). A sequential reaction of Al(III) and Be(II) with morin (immobilized on beads) to form their fluorescent complexes is performed on the bead sensing support and their respective fluorescence emission monitored, after doing two successive injections from the mixture solution. Firstly, Al(III) could be determined in the sample using 0.5 M NaCl/HCl, pH 6 as carrier. Then, the carrier solution was changed (0.3 M NaCl/NaOH, pH 12) making possible the elution of Al(III) and the restoration of the baseline, then allowing the reaction of Be(II). At the end of the analysis, beads are automatically discarded from the flow cell, by reversing the flow, and transported out of the system. The analytical signals are measured at an excitation wavelength of 440 nm and an emission wavelength of 520 nm. Using a sample volume of 600 μl, the analytical signal showed a very good linearity in the range 0.1–8 ng ml−1 and 0.1–1 μg ml−1 with detection limits of 0.024 ng ml−1 and 0.010 μg ml−1 for Be(II) and Al(III), respectively. R.S.D.s (%) lower than 5% were obtained for both analytes and the selectivity was improved using EDTA as masking reagent. The sensor was satisfactorily applied to the determination of these metals in waters and simulated alloy samples.  相似文献   

10.
A supported liquid membrane system has been developed for the extraction of vanillin from food samples. A porous PTFE membrane is impregnated with an organic solvent, which forms a barrier between two aqueous phases. The analyte is extracted from a donor phase into the hydrophobic membrane and then back extracted into a second aqueous solution, the acceptor. The determination (100–1400 μg ml−1 vanillin) was performed using a PVC-graphite composite electrode versus Ag/AgCl/3MKCl at +0.850 V placed in a wall-jet flow cell as amperometric detector. The solid sample is directly placed in the membrane unit without any treatment, and the analyte was extracted from the sample, passes through the membrane and conduced to the flow cell by the acceptor stream. The limit of detection (3σ) was 44 μg ml−1. The method was applied to the determination of vanillin (9–606 μg g−1) in food samples.  相似文献   

11.
Zhou X  Xing D  Zhu D  Tang Y  Jia L 《Talanta》2008,75(5):1300-1306
Enrofloxacin (ENR) is a fluoroquinolone developed exclusively for the use in veterinary practice for the treatment of respiratory and gastrointestinal infections, and ciprofloxacin (CIP) is its main active metabolite. Their contents are regulated by the EU Council Regulation no. 2377/90 in animal edible tissues. We developed a sensitive and rapid method for the determination of ENR and CIP by capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection. The method is based on the detection of aliphatic tertiary or secondary amino moieties in ENR and CIP with end-column tris(2,2-bipyridyl)ruthenium(II) electrochemiluminescence. Parameters that affect separation and detection were optimized. Under the optimized conditions, the calibration functions were linear in the range of 0.03–1 μg ml−1 for ENR and 0.05–1.2 μg ml−1 for CIP. The detection limits of ENR and CIR were 10 ng ml−1 and 15 ng ml−1, respectively, based on the signal-to-noise ratio of 3. The relative standard derivations of the peak height and the migration time for ENR and CIP were less than 4.13%. The developed method was successfully applied to determine ENR and CIP in milk with a solid-phase extraction procedure.  相似文献   

12.
A HPLC method with automated column switching and UV-diode array detection is described for the simultaneous determination of Vitamin D3 and 25-hydroxyvitamin D3 (25-OH-D3) in a sample of human plasma. The system uses a BioTrap precolumn for the on-line sample cleanup. A sample of 1 ml of human plasma was treated with 2 ml of a mixture of ethanol–acetonitrile (2:1 (v/v)). Following centrifugation, the supernatant was evaporated to dryness under a stream of dry and pure nitrogen. The residue was reconstituted in 250 μL of a solution of methanol 5 mmol l−1 phosphate buffer, pH 6.5 (4:1 (v/v)), and a 200 μl aliquot of this solution was injected onto the BioTrap precolumn. After washing during 5 min with a mobile phase constituted by a solution of 6% acetonitrile in 5 mmol l−1 phosphate buffer, pH 6.5 (extraction mobile phase), the retained analytes were then transferred to the analytical column in the backflush mode. The analytical separation was then performed by reverse-phase chromatography in the gradient elution mode with the solvents A and B (Solvent A: acetonitrile–phosphate buffer 5 mmol l−1, pH 6.5; 20:80 (v/v); solvent B: methanol–acetonitrile–tetrahydrofuran, 65:20:15 (v/v)). The compounds of interest were detected at 265 nm. The method was linear in the range 3.0–32.0 ng ml−1 with a limit of quantification of 3.0 ng ml−1. Quantitative recoveries from spiked plasma samples were between 91.0 and 98.0%. In all cases, the coefficient of variation (CV) of the intra-day and inter-day-assay precision was ≤2.80%. The proposed method permitted the simultaneous determination of Vitamin D3 and 25-OH-D3 in 16 min, with an adequate precision and sensitivity. However, the overlap of the sample cleanup step with the analysis increases the sampling frequency to five samples h−1. The method was successfully applied for the determination of Vitamin D3 and 25-OH-D3 in plasma from 46 female volunteers, ranging from 50 to 94 years old. Vitamin D3 and 25-OH-D3 concentrations in plasma were found from 4.30–40.70 ng ml−1 (19.74 ± 9.48 ng ml−1) and 3.1–36.52 ng ml−1 (7.13 ± 7.80 ng ml−1), respectively. These results were in good agreement with data published by other authors.  相似文献   

13.
Singh HB  Agnihotri NK  Singh VK 《Talanta》1998,47(5):4717-1296
A rapid and sensitive method for the trace level determination of beryllium based on the formation of a 1:2 complex (λmax 560 nm) with 1,4-dihydroxy-9,10-anthracenedione in an aqueous medium containing Triton X-100 is reported. Beer’s law is followed in the range 3.60–360 ng ml−1 of Be(II). The molar absorptivity and Sandell’s sensitivity are 1.68×104 l mol−1cm−1 and 0.54 ng cm−2, respectively; detection limit is 0.23 ng ml−1 of Be(II). Analysis of synthetic mixtures of composition similar to that of alloys and spiked samples of distilled water, gave results that are in agreement with their beryllium content.  相似文献   

14.
Zanjanchi MA  Noei H  Moghimi M 《Talanta》2006,70(5):933-939
Diffuse reflectance spectroscopy (DRS) can be used as a rapid and sensitive method for the quantitative determination of low amounts of aluminum. In this analytical technique, the analyte in samples are extracted onto a solid sorbent matrix loaded with a colorimetric reagent and then quantified directly on the adsorbent surface. Alternatively, colored aluminum complexes formed in solution can also be immobilized onto adsorbent surface and be measured by DRS technique. Octadecyl silica disk, methyltrioctylammonium chloride–naphthalene and MCM-41 were examined as adsorbents. Eriochrome cyanine R and quinalizarin were used as coloring reagents. Optimal sorption conditions were found for each system of analyte–reagent–adsorbent. The concentration of analyte is determined using the appropriate form of the Kubelka–Munk function. We obtained for each of the aluminium–reagent–adsorbent system a calibration curve by plotting the absorbance versus the log 102[Al3+] μg ml−1. The linear dynamic range extends over two orders of magnitude within 0.01–15 μg ml−1 with little differences in the range and in the correlation coefficients among the adsorbents. We consider that for a rapid determination of aluminum a spot-test-DRS combination with a detection limit of 1.0 × 10−2 μg ml−1 is the more facile and preferred technique.  相似文献   

15.
Muzikar M  Fontàs C  Hidalgo M  Havel J  Salvadó V 《Talanta》2006,70(5):1081-1086
A new matrix separation/preconcentration method is developed for the on-line determination of palladium(II) and platinum(IV) in complex matrices using a sequential ICP-OES instrument. These metals are preconcentrated in a microcolumn packed with Metalfix-Chelamine, a polymeric functionalised resin containing the tetraethylenepentamine group. The hydrodynamic and chemical conditions of the flow system affecting the loading and elution steps are optimised off-line using a mixture of 1.0 mol L−1 thiourea and 2.0 mol L−1 NaClO4 in 4.0 mol L−1 HCl which proved to be the most effective solution for the simultaneous elution of Pd(II) and Pt(IV). High enrichment factors of nearly 35 are achieved for both metals and the detection limits (LOD) are 22 ng L−1 for platinum and 2.5 ng L−1 for palladium. The accuracy of the method was tested by analysing a used pellet catalyst (certified reference material NIST 2556) and trace metal solutions resulting from the leaching of this material. Despite the fact that this CRM contains zirconium and large amounts of aluminium and lead, a high level of agreement was achieved demonstrating the efficiency of the resin in eliminating interfering elements.  相似文献   

16.
A catalytic photometric method was developed for the determination of sub-nanogram levels of cobalt. The method is based on the catalytic effect of cobalt(II) on the oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAOS) to form a colored dye (λmax=525 nm) in the presence of hydrogen peroxide. In this reaction system, 1,2-dihydroxybenzene-3,5-disulfonate (Tiron) acted as an effective activator for the catalysis of cobalt(II). Variation of reaction time between 5 and 10 min allows the determination range to be extended from 0.01 to 1.0 ng ml−1. The reaction system can also be successfully adapted to flow-injection analysis (FIA). The dynamic range of the proposed flow-injection method was 0.01–1.0 ng ml−1 and detection limit (signal/noise, S/N=3) was 5 pg ml−1 at a sampling rate of 30 h−1. Manual and flow-injection methods were applied to the direct determination of cobalt in pepperbush as a standard material.  相似文献   

17.
Ahmed MJ  Banoo S 《Talanta》1999,48(5):711-1094
The very sensitive, fairly selective direct spectrophotometric method for the determination of trace amount of vanadium (V) with 1,5-diphenylcarbohydrazide (1,5-diphenylcarbazide) has been developed. 1,5-diphenylcarbohydrazide (DPCH) reacts in slightly acidic (0.0001–0.001 M H2SO4 or pH 4.0–5.5) 50% acetonic media with vanadium (V) to give a red–violet chelate which has an absorption maximum at 531 nm. The average molar absorption coefficient and Sandell’s sensitivity were found to be 4.23×104 l mol−1 cm−1 and 10 ng cm−2 of Vv, respectively. Linear calibration graph were obtained for 0.1–30 μg ml−1 of Vv: the stoichiometric composition of the chelate is 1:3 (V: DPCH). The reaction is instantaneous and absorbance remain stable for 48 h. The interference from over 50 cations, anions and complexing agents has been studied at 1 μg ml−1 of Vv. The method was successfully used in the determination of vanadium in several standard reference materials (alloys and steels), environmental waters (potable and polluted), biological samples (human blood and urine), soil samples, solution containing both vanadium (V) and vanadium (IV) and complex synthetic mixtures. The method has high precision and accuracy (s=±0.01 for 0.5 μg ml−1).  相似文献   

18.
Rojas FS  Ojeda CB  Pavón JM 《Talanta》2006,70(5):979-983
A flow injection (FI) system was used to develop an efficient on-line sorbent extraction preconcentration system for palladium by graphite furnace atomic absorption spectrometry (GFAAS). The investigated metal was preconcentrated on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The palladium is eluted with 40 μl of HCl 4 M and directly introduced into the graphite furnace. The detection limit for palladium under the optimum conditions was 0.4 ng ml−1. This procedure was employed to determine palladium in different samples.  相似文献   

19.
Burakham R  Oshima M  Grudpan K  Motomizu S 《Talanta》2004,64(5):1259-1265
A novel spectrophotometric reaction system was developed for the determination of nitrite as well as nitrate in water samples, and was applied to a flow-injection analysis (FIA). The spectrophotometric flow-injection system coupled with a copperised cadmium reductor column was proposed. The detection was based on the nitrosation reaction between nitrite ion and phloroglucinol (1,3,5-trihydroxybenzene), a commercially available phenolic compound. Sample injected into a carrier stream was split into two streams at the Y-shaped connector. One of the streams merged directly and reacted with the reagent stream: nitrite ion in the samples was detected. The other stream was passed through the copperised cadmium reductor column, where the reduction of nitrate to nitrite occurred, and the sample zone was then mixed with the reagent stream and passed through the detector: the sum of nitrate and nitrite was detected. The optimised conditions allow a linear calibration range of 0.03–0.30 μg NO2-N ml−1 and 0.10–1.00 μg NO3-N ml−1. The detection limits for nitrite and nitrate, defined as three times the standard deviation of measured blanks are 2.9 ng NO2-N ml−1 and 2.3 ng NO3-N ml−1, respectively. Up to 20 samples can be analyzed per hour with a relative standard deviation of less than 1.5%. The proposed method could be applied successfully to the simultaneous determination of nitrite and nitrate in water samples.  相似文献   

20.
Wang J  Zhang C  Wang H  Yang F  Zhang X 《Talanta》2001,54(6):146-1193
A simple, fast chemiluminescence (CL) flow-injection method based on the reaction of luminol with H2O2 in the presence of a cationic surfactant (cyltrimethylammonium bromide, CTMAB) has been described for the direct determination of dichlorvos pesticide (DDVP). Under the optimal conditions, the CL intensity was linear to the DDVP concentration in the range of 0.02–3.1 μg ml−1 (r=0.9998, n=10). The relative standard deviation was 3.4% at 0.35 μg ml−1 (n=10), with a detection limit (3σ) of 0.008 μg ml−1 DDVP. The possible reaction mechanism was also discussed. This method has been successfully applied to the determination of trace DDVP residue in vegetable sample and results have been compared with that of the UV method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号