首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermetallic compounds La3–xMgxNi9 (x = 1.0, 1.1) were synthesized and their hydrogen sorption and electrochemical properties were studied. The maximum hydrogen storage capacities for La2MgNi9 and La1.9Mg1.1Ni9 were shown to be 1.6±0.1 and 1.5±0.1 wt.%, respectively, and the unit cell volume increased by 24% and 16%, respectively, upon the hydrogenation of the alloys. The maximum specific capacity of the electrodes with the La1.9Mg1.1Ni9 and La2MgNi9 alloys is 390 mA h g–1 at a discharge current density of 60 mA g–1, which is 24% higher as compared to the similar data for the LaNi5 alloy (315 mA h g–1). The electrodes demonstrate high specific capacity and performance at high current densities, as well as good cyclic stability.  相似文献   

2.
The structures and the electrochemical characteristics of La0.7−x CexMg0.3Ni2.8Co0.5 (x = 0.1–0.5) alloy, Ti0.25−x ZrxV0.35Cr0.1Ni0.3 (x = 0.05–0.15) alloy and AB3<x<5-type alloy, which are the representative examples of AB3-type alloy, solid solution alloy and non-AB5-type alloy, respectively, have been investigated, and the performances of MH-Ni battery in which AB3<x<5 type alloy is used as the negative electrode material are examined at relatively low temperature.  相似文献   

3.
(La_(1-x)Mg_x)_2(Ni_(0.8)Co_(0.2))_7(x = 0.125, 0.25, 0.5) alloys were synthesized from the sintered mixture of La_2O_3+ Ni O + Co O + Mg O in the molten CaCl_2 electrolyte at 750 °C and the electrochemical hydrogen storage capacities of the synthesized alloys were measured. Non-hygroscopic LaNiO_3 phase formed during sintering(at 1200 °C for 2 h) as a result of the reaction of hygroscopic La_2O_3 with NiO. Another sinter product was Mg_(0.4)Ni_(0.6)O phase. Both mixed oxide sinter products facilitated the La-Ni and Mg-Ni phase formations. X-ray diffraction peaks indicated that the first stable phase appeared in the alloy structure was LaNi_5 which formed upon reduction of La_2NiO_4 phase. Increase in Mg content caused formation of La_(1.5)Mg_(0.5)Ni_7 phase in the alloy structure and the presence of this phase improved the hydrogen storage performance of the electrodes. It was observed that(La_(1-x)Mg_x)_2(Ni_(0.8)Co_(0.2))_7(x = 0.125, 0.25, 0.5) alloys have promising discharge capacities change between 319 m Ah/g and 379 m Ah/g depending on the alloy Mg content.  相似文献   

4.
The La0.85MgxNi4.5Co0.35Al0.15 (0.05?x?0.35) system compounds have been prepared by arc melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.15 alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at −40°C.  相似文献   

5.
La2CuO4 nanofibers (ca. 30 nm in diameter and 3 μm in length) have been grown in situ by using single walled carbon nanotubes (SWNTs; ca. 2 nm in inner diameter; made via cracking CH4 over the catalyst of Mg0.8Mo0.05Ni0.10Co0.05Ox at 800 °C) as templates under mild hydrothermal conditions and a temperature around 60 °C. During synthesis, the surfactant poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) and H2O2 were added to disperse SWNTs and oxidize the reactants, respectively. The structure of La2CuO4 nanofibers was confirmed by powder X-ray diffraction (XRD) and their morphologies were observed with field emission scanning electron microscope (FESEM) at the hydrothermal synthesis lasting for 5, 20 and 40 h, respectively. The La2CuO4 crystals grew from needle-like (5 h) through stick-like (20 h) and finally to plate-like (40 h) fibers. Twenty hours is an optimum reaction time to obtain regular crystal fibers. The La2CuO4 nanofibers are probably cubic rather than round and may capsulate SWNTs.  相似文献   

6.
Hydrogen storage alloys La0.63Gd0.2?Mg0.17Ni3.35?x Co x Al0.15 (x?=?0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0) were prepared by induction melting followed by annealing treatment in argon atmosphere. The electrochemical properties of La0.63Gd0.2?Mg0.17Ni3.35?x Co x Al0.15 (x?=?0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0) alloy electrodes depended on the alloy structure type. XRD patterns and EPMA showed that the alloys consisted of Ce2Ni7-type (Gd2Co7-type), CaCu5-type, Pr5Co19-type, and PuNi3-type phase structure. Pr5Co19-type and Ce2Ni7-type phase increased with the increase of Co content x. However, CaCu5-type phase firstly decreased then increased as Co content increased. Rietveld analysis showed that the c-axis lattice parameters and cell volumes of the component phases increased with increasing Co content. The electrochemical measurements showed that as the Co content increased, the maximum discharge capacity and the cyclic stability of the annealed alloys both first increased and then decreased. The La0.63Gd0.2?Mg0.17Ni3.05Co0.3Al0.15 alloy electrode exhibited the maximum discharge capacity (392.92 mAh/g), and La0.63Gd0.2?Mg0.17Ni1.85Co1.5Al0.15 alloy electrode showed the best cyclic stability (S100?=?96.1 %). The electrochemical kinetics studies indicate that La0.63Gd0.2?Mg0.17Ni1.85Co1.5Al0.15 exhibited a higher rate dischargeability (HRD900?=?86.3 %). Electrochemical analyses showed that the control process of alloy electrode reaction is charge-transfer rate in surface film of alloy.  相似文献   

7.
李强*  赵辉  江瑞  郭力帆 《物理化学学报》2012,28(9):2065-2070
采用甘氨酸-硝酸盐法合成了中温固体氧化物燃料电池阴极材料La1.6Sr0.4Ni1-xCuxO4 (x=0.2, 0.4, 0.6,0.8), 利用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结构和微观形貌进行了表征. 结果表明, 该阴极材料与固体电解质Ce0.9Gd0.1O1.95(CGO)在1000 °C烧结时不发生化学反应, 且烧结4 h 后, 二者之间可形成良好的接触界面. 利用电化学交流阻抗谱技术对阴极材料的电化学性能进行研究, 结果显示, 当Cu离子掺杂量(x)为0.6 时, La1.6Sr0.4Ni0.4Cu0.6O4阴极具有最小的极化电阻, 在空气中当测试温度为750 °C时, 极化电阻为0.35 Ω·cm2. 在不同氧分压条件下电化学阻抗谱分析结果表明, 电极上的两个氧还原反应主要包含氧离子从三相界面向电解质CGO 转移的过程和电荷的迁移过程, 其中电荷的迁移过程为电极反应的速率控制步骤.La1.6Sr0.4Ni0.4Cu0.6O4电极在空气中700 °C和阴极电流密度为45 mA·cm-2时, 阴极过电位为45 mV. 本研究的初步结果表明La1.6Sr0.4Ni1-xCuxO4材料是一种电化学性能较为优良的新型中温固体氧化物燃料电池(IT-SOFC)阴极材料.  相似文献   

8.
Subsolidus phase equilibria and crystal chemistry were studied for the La2O3-MgO-TiO2 system and for the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3 in the quaternary La2O3-CaO-MgO-TiO2 system. Dielectric properties (relative permittivity and temperature coefficient of resonant frequency, τf) were measured at 5-10 GHz and mapped onto the phase equilibria relations to reveal the compositions of temperature-stable (τf=0) compounds and mixtures. Phase equilibria relations were obtained by X-ray powder diffraction analysis of approximately 80 specimens prepared by solid-state reactions in air at ∼1450°C. Six ternary phases were found to form in the La2O3-MgO-TiO2 system, including the three previously reported compounds LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, and “La6MgTi4O18”; and the new phases La10MgTi9O34, La9Mg0.5Ti8.5O31, and a perovskite-type solid solution (1−x)LaMg1/2Ti1/2O3-xLa2/3TiO3 (0?x?0.5). The phase previously reported as “La6MgTi4O18” was found to form off-composition, apparently as a point compound, at La6Mg0.913Ti4.04O18. Indexed experimental X-ray powder diffraction patterns are given for LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, La6Mg0.913Ti4.04O18, La10MgTi9O34, and La9Mg0.5Ti8.5O31. LaMg1/2Ti1/2O3 exhibits a slightly distorted perovskite structure with ordered B-cations (P21/n; a=5.5608(2) Å, b=5.5749(3) Å, c=7.8610(5) Å, β=90.034(4)°). La5Mg0.5Ti3.5O15 (Pm1; a=5.5639(1), c=10.9928(5) Å) and La6Mg0.913Ti4.04O18 (R3m; a=5.5665(1), c=39.7354(9) Å) are n=5 and n=6 members, respectively, of the (111) perovskite-slab series AnBn−1O3n. The new phases La10MgTi9O34 (a=5.5411(2), b=31.3039(9), c=3.9167(1) Å) and La9Mg0.5Ti8.5O31 (a=5.5431(2), b=57.055(1), c=3.9123(1) Å) are n=5 and n=4.5 members, respectively, of the (110) perovskite-slab series AnBnO3n+2, which exhibit orthorhombic subcells; electron diffraction revealed monoclinic superlattices with doubled c-parameters for both compounds. Extensive perovskite-type solid solutions form in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. The La2O3-MgO-TiO2 system contains two regions of temperature-stable (τf=0) compositions. The quaternary La2O3-CaO-MgO-TiO2 system contains an extensive single-phase perovskite-type volume through which passes a surface of temperature-stable compositions with permittivities projected to be in the 40-50 range. Traces of this surface occur as lines of τf=0 perovskite-type phases in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3.  相似文献   

9.
This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) x (x=2.5–5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5–3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0–5.0 is LaNi5phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I 0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.  相似文献   

10.
The double perovskites La2CoVO6, La2CoTiO6, and La2NiVO6, are described. Rietveld fitting of neutron and powder X-ray diffraction data show La2NiVO6 and La2CoVO6 to have a disordered arrangement of B-cations whereas La2CoTiO6 shows ordering of the B-cations (with ∼5% Co/Ti inversion). Curie-Weiss fits to the linear region of the 1/χ plots reveal Weiss temperatures of −107, −34.8, and 16.3 K for La2CoVO6, La2CoTiO6, and La2NiVO6, respectively, and magnetic transitions are observed. La2CoTiO6 prepared by our method differs from material prepared by lower-temperature routes. A simple antiferromagnetic spin model is consistent with the data for La2CoTiO6. These compounds are semiconductors with bandgaps of 0.41 (La2CoVO6), 1.02 (La2CoTiO6) and 0.45 eV (La2NiVO6).  相似文献   

11.
The initial and subsequent hydriding process and hydrogen storage characteristics of Mg-x wt.%LaNi5 (x = 10–60) sintered alloys were investigated in comparison with those of pure magnesium, Mg2Ni and LaMg12. LaNi5 addition significantly lowered the temperature at which the hydrogen absorption of magnesium was initiated during the initial hydriding process. The subsequent hydriding rate was also accelerated by the addition of LaNi5 up to 30%, beyond which the hydriding rate decreased steeply. Microstructural observations revealed that Mg-xwt.%LaNi5 sintered alloys (x ⩽ 25.6) consisted of primary magnesium, a eutectic mixture of Mg-Mg2Ni and LaMg12, while the alloys (25.6 ⩽ x ⩽ 44.7) consisted of primary Mg2Ni, LaMg12 and a eutectic mixture of Mg-Mg2Ni. The alloys with x ⩾ 44.7 consisted of Mg2Ni, LaMg12 and LaNi5. It was found that the initial and subsequent hydriding rates were closely related to the microstructure and the types of phases present in the alloys. For the initial hydriding process, the presence of LaNi5 together with the Mg2Ni phase in the alloy play a crucial role in the acceleration of the initial hydriding process. The subsequent hydriding rates are probably dependent on the amounts of Mg-Mg2Ni eutectic mixture present in the alloy, whose complicated structure may be effective for hydriding. The pressure-composition isotherms of Mg-xwt.%-LaNi 5 sintered alloys consisted of two plateaux. The pressures of the lower plateau were consistent with those of magnesium and LaMg12, while the pressures of the higher plateau were consistent with that of Mg2Ni. It may be concluded that Mg-30wt.%LaNi5 sintered alloy would be the most suitable material for hydrogen storage of the materials investigated in this study. That is, the initial and subsequent hydriding rates were faster and the hydrogen storage capacity of about 5 wt.% was larger than those of Mg2Ni.  相似文献   

12.
A new direct route for the “bottom up” syntheses of phases in the Lan+1NinO3n+1 series (n=1, 2, 3 and ∞) has been achieved via single-step heat treatments of nanosized co-crystallized precursors. The co-crystallized precursors were prepared using a continuous hydrothermal flow synthesis system that uses a superheated water flow at ca. 400 °C and 24.1 MPa to produce nanoparticulate slurries. Overall, a significant reduction in time and number of steps for the syntheses of La3Ni2O7 and La4Ni3O10 was achieved compared with more conventional synthesis methods, which typically require multiple homogenization and reheating steps over several days.  相似文献   

13.
The total conductivity and Seebeck coefficient of a series of Ni-containing phases, including La2Ni1−xMxO4+δ (M=Co, Cu; x=0.1-0.2) with K2NiF4-type structure and perovskite-like La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3−δ and La0.50Pr0.50Ga0.65Mg0.15Ni0.20O3−δ, were studied in the oxygen partial pressure range from 10−18 Pa to 50 kPa at 973-1223 K. Within the phase stability domain, the conductivity of layered nickelates is predominantly p-type electronic and occurs via small-polaron mechanism, indicated by temperature-activated hole mobility and p(O2) dependencies of electrical properties. In oxidizing conditions similar behavior is characteristic of Ni-containing perovskites, which exhibit, however, significant ionic contribution to the transport processes. The role of ionic conduction increases with decreasing p(O2) and becomes dominant in reducing atmospheres. All nickelate-based phases decompose at oxygen pressures considerably lower with respect to Ni/NiO boundary. The partial substitution of nickel in La2Ni(M)O4+δ has minor effect on the stability limits, which are similar to that of La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3−δ. On the contrary, praseodymium doping enhances the stability of La0.50Pr0.50Ga0.65Mg0.15Ni0.20O3−δ down to p(O2) values as low as 10−17-10−10 Pa at 1023-1223 K.  相似文献   

14.
The present work is focused on studies of the influence of magnesium on the hydrogenation behaviour of the (La,Mg)2Ni7 alloys. Substitution of La in La2Ni7 by Mg to form La1.5Mg0.5Ni7 preserves the initial Ce2Ni7 type of the hexagonal P63/mmc structure and leads to contraction of the unit cell. The system La1.5Mg0.5Ni7-H2 (D2) was studied using in situ synchrotron X-ray and neutron powder diffraction in H2/D2 gas and pressure-composition-temperature measurements. La replacement by Mg was found to proceed in an ordered way, only within the Laves-type parts of the hybrid crystal structure, yielding formation of LaMgNi4 slabs with statistic and equal occupation of one site by La and Mg atoms. Mg alters structural features of the hydrogenation process. Instead of a strong unilateral anisotropic expansion which takes place on hydrogenation of La2Ni7, the unit cell of La1.5Mg0.5Ni7D9.1 is formed by nearly equal hydrogen-induced expansions proceeding in the basal plane (Δa/a=7.37%) and along [001] (Δc/c=9.67%). In contrast with La2Ni7D6.5 where only LaNi2 layers absorb hydrogen atoms, in La1.5Mg0.5Ni7D9.1 both LaNi5 and LaMgNi4 layers become occupied. Nine types of sites were found to be filled by D in total, including tetrahedral (La,Mg)2Ni2, (La,Mg)Ni3, Ni4, tetragonal pyramidal La2Ni3 and trigonal bipyramidal (La,Mg)3Ni2 interstices. The hydrogen sublattice around the La/Mg site shows formation of two co-ordination spheres of D atoms: an octahedron MgD6 and a 16-vertex polyhedron LaD16 around La. The interatomic distances are in the following ranges: La-D (2.28-2.71), Mg-D (2.02-2.08), Ni-D (1.48-1.86 Å). All D-D distances exceed 1.9 Å. Thermodynamic PCT studies yielded the following values for the ΔH and ΔS of hydrogenation/decomposition; ΔHH=−15.7±0.9 kJ (molH)−1 and ΔSH=−46.0±3.7 J (K molH)−1 for H2 absorption, and ΔHH=16.8±0.4 kJ (molH)−1 and ΔSH=48.1±1.5 J (K molH)−1 for H2 desorption.  相似文献   

15.
The structures of the oxyorthogermanate La2(GeO4)O and the apatite-structured La9.33(GeO4)6O2 have been refined from powder neutron diffraction data. La2(GeO4)O crystallizes in a monoclinic unit cell (P21/c) and is cation stoichiometric in contrast to previous reports. La9.33(GeO4)6O2 crystallizes in a hexagonal unit cell (P63/m) and the powder diffraction data show anisotropic peak broadening that is observed in electron diffraction patterns as incommensurate diffuse spots at hkq reciprocal planes (with q=1.6-1.7) and can be attributed to a correlated disorder in the “apatite channels”. This compound was doped up to a nominal composition close to M2La8(GeO4)6O2 with M=Ca, Sr, Ba. The dopant ions preferentially occupy the 4f sites as the number of La vacancies decreases. The measured ionic conductivity of La9.33(GeO4)6O2 is about 3 orders of magnitude larger than for La2(GeO4)O at high temperatures and decreases with increasing dopant content from the highest value of about 0.16 S cm−1 at 1160 K.  相似文献   

16.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

17.
The hydrogenation properties of the LaNi5 (CaCu5 type, hP6, P6/mmm) and Pd substituted derivatives LaNi5−xPdx compounds have been studied in the whole homogeneity range of the solid solution (0.25≤x≤1.5). The pressure versus hydrogen content isotherms show several plateaus and an increase of the plateau pressure as a function of palladium concentration. The volume increase of the Pd substituted alloys should have resulted in a lowering, and not an increase, of the plateau pressure, according to the conventional models based on the size effect. In order to elucidate the origin of this anomalous behavior, both an experimental and a theoretical ab initio electronic structure investigation have been carried out. Experimentally, the nature and the structural properties of the hydrides have been studied by both in situ and ex situ neutron diffraction. The crystal structures of the three hydride phases are reported (LaNi3.5Pd1.5D1.96, filled-up CaCu5 type, P6/mmm; LaNi4PdD2.72, LaNi2(Ni0.75Pt0.25)3H2.61 type, oI128, Ibam; LaNi4.75Pd0.25D5.67, partly ordered CaCu5 type, P6mm). In addition, the phase diagram of LaNi5−xPdx-H system has been investigated. The electronic and thermodynamic properties of both intermetallic compounds and the hydrides have been studied by ab initio electronic structure calculations. The theoretical results are in good agreement with our experimental data, and show that electronic interactions play a major role in the hydrogenation behavior of these Pd substituted intermetallic compounds, and that these effects cannot be accounted for by a simplistic model based on the size effect alone.  相似文献   

18.
La0.6Sr1.4MnO4 (LSMO4) layered perovskite with K2NiF4 structure was prepared and evaluated as anode material for La0.8Sr0.2Ga0.83Mg0.17O3 − δ (LSGM) electrolyte supported intermediate temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that LSMO4 is redox stability. Thermal expansion coefficient of LSMO4 is close to that of LSGM electrolyte. By adopting LSMO4 as anode and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) as cathode, maxium power densities of 146.6, 110.9 mW cm− 2 with H2 fuel at 850, 800 °C and 47.3 mW cm− 2 with CH4 fuel at 800 °C were obtained, respectively. Further, the cell demonstrated a reasonably stable performance under 180 mA cm− 2 for over 40 h with H2 fuel at 800 °C.  相似文献   

19.
为了获得既具有较高电化学容量又具有良好循环稳定性的低钴AB5型贮氢合金,研究了Fe部分替代Cu对低钴AB5型贮氢合金相结构和电化学性能的影响.采用真空感应熔炼方法,制备了一系列含Cu和Fe的低钴AB5型贮氢合金LaNi3.55Mn0.35Co0.20Al0.20Cu0.85-xFex(x=0.10,0.20,0.25,0.40,0.60).粉末X射线衍射(XRD)分析表明,合金含有单一CaCu5型六方结构的LaNi5相,Fe部分替代Cu并没有改变合金的本体相结构,但随着Fe含量的增大,晶格参数a,c和晶胞体积V增大.电化学性能测试表明,随着x增加,合金的放电容量和高倍率放电能力降低,但是循环稳定性得到了显著提高.当x从0.10增加到0.60时,合金的200周循环稳定性(S200)从77.6%提高到89.9%.Fe替代Cu有利于提高合金的循环稳定性,这主要是随着Fe替代量增大,晶胞体积增大,晶格体积膨胀率明显减小,合金的抗粉化能力增强.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号