首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
-Soluble calf lens proteins were extensively glycated during a 4 week incubation with ascorbic acid in the presence of oxygen. Amino acid analysis of the dialyzed proteins removed at weekly intervals showed an increasing loss of lysine, arginine and histidine, consistent with the extensive protein cross-linking observed. Irradiation of the dialyzed samples with UVA light (1.0 kJ/cm2 total illumination through a 338 nm cutoff filter) caused an increasing loss of tryptophan, an additional loss of histidine and the production of micromolar concentrations of hydrogen peroxide. No alteration in amino acid content and no photolytic effects were seen in proteins incubated without ascorbic acid or in proteins incubated with glucose for 4 weeks. The rate of hydrogen peroxide formation was linear with each glycated sample with a maximum production of 25 nmol/mg protein illuminated. The possibility that the sensitizer activity was due to an ascorbate-induced oxidation of tryptophan was eliminated by the presence of a heavy metal ion chelator during the incubation and by showing equivalent effects with ascorbate-incubated ribonuclease A, which is devoid of tryptophan. The ascorbate-incubated samples displayed increasing absorbance at wavelengths above 300 nm and increasing fluorescence (340/430) as glycation proceeded. The spectra of the 4 week glycated proteins were identical to those obtained with a solubilized water-insoluble fraction from human lens, which is known to have UVA sensitizer activity. The incubation of lens proteins with dehydroascorbic acid or l -threose, but not fructose, produced equivalent glycation, protein crosslinking and sensitizer activity. The relative sensitizer activity of the 4 week glycated sample was quantitatively very similar to that of a water-insoluble fraction from aged human lenses. These data are consistent with the hypothesis that the protein-bound brunescence in the lens may be advanced glycation endproducts, which are formed in large part by the oxidation products of ascorbic acid, and that these compounds may contribute significantly to the UVA sensitizer activity present in aged human lenses.  相似文献   

2.
Structural and Functional Changes in Catalase Induced by Near-UV Radiation   总被引:3,自引:0,他引:3  
Part one of this study shows that exposure of purified beef liver catalase in buffered solutions to BL lamps that provide a mixture of 99% UVA and 1% UVB (to be labeled UVA) alters its chemistry and enzymatic activity. Thus, its spectral absorbance lost detail, it aggregated and exhibited a lower isoelectric point and its enzymatic activity was substantially reduced. These photochemically induced changes were increased by irradiation in phosphate buffer or in physiological medium (minimal essential medium) containing riboflavin and tryptophan. Neither α-tocopherol nor de-feroxamine were protective against these UVA-induced changes in pure catalase. We further investigated the effect of UVA radiation on the activity of catalase in cultured lens epithelial cells and the protective effects of antioxidants. Cultured lens epithelial cells of rabbits and squirrels were exposed to near-UV radiation with representation in the UVA region of 99% and 1% UVB. Catalase assays were done on ho-mogenate supernatants of cells kept dark or UV exposed. In some instances, cells were cultured in medium containing a-tocopherol or deferoxamine prior to UV radiation. Comparisons were made between UV-exposed lens cell catalase activity when exposure was done with or without the antioxidants. The UVA radiation was strongly inhibitory to both rabbit and squirrel lens epithelial cell catalase activities. The range of fluxes of near UV radiation was compatible with that which could reach the lens from the sunlit environment. Catalase inactivation was lessened in cells preincubated with a-tocopherol and deferoxamine. This suggests that both singlet oxygen and hydroxyl radical formation may be involved in near-UV damage to lens epithelial cell catalase. Such inhibition of catalase by near-UV would enhance H2O2 toxicity and stimulate SH oxidation so as to damage the lens.  相似文献   

3.
Electron transfer from photoexcited TiO2 particles to dissolve oxygen (O2), and then to an active center of superoxide dismutase (SOD), was investigated by a slurry electrode technique. As a result of electron transfer, the superoxide anion (O2) was formed initially, and was then further converted effectively into H2O2 by SOD catalysis. At a constant applied potential of 0.6 V (vs. SCE), an increase in photocurrent resulting from oxidation of O2 and H2O2 on a SnO2 working electrode was observed. However, such an increase in photocurrent decreased rapidly on the addition of catalase, which is a scavenger of H2O2.  相似文献   

4.

Background  

The reversible oxidation of protein SH groups has been considered to be the basis of redox regulation by which changes in hydrogen peroxide (H2O2) concentrations may control protein function. Several proteins become S-glutathionylated following exposure to H2O2 in a variety of cellular systems. In yeast, when using a high initial H2O2 dose, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the major target of S-glutathionylation which leads to reversible inactivation of the enzyme. GAPDH inactivation by H2O2 functions to reroute carbohydrate flux to produce NADPH. Here we report the effect of low regulatory H2O2 doses on GAPDH activity and expression in Saccharomyces cerevisiae.  相似文献   

5.
Abstract —This research was undertaken to demonstrate that the protein-bound chromophores in aged human lens can act as sensitizers for protein damage by UVA light. The water-insoluble (WI) proteins from pooled human and bovine lenses were solubilized by sonication in water and illuminated with UV light similar in output to that transmitted by the cornea. Analysis of the irradiated proteins showed a linear decrease in sulfiydryl groups with a 30% loss after 2 h. No loss was seen when native a-crystallin was irradiated under the same conditions. A 25% loss of histidine residues was also observed with the human lens WI fraction, and sodium dodecyl sulfate polyacrylamide gels indicated considerable protein cross-linking. Similar photodamage was seen with a WI fraction from old bovine lenses. While the data show the presence of UVA sensitizers, some histidine destruction and protein cross-linking were also obtained with a-crystallin and with lysozyme, which argue that part of the histidine loss in the human WISS was likely due to tryptophan acting as a sensitizer.
A preparation of human WI proteins was irradiated with a total of 200 J/cm2 of absorbed light at 10 nm intervals from 290 to 400 nm. Photodamage of cysteine SH groups (35%) and methionine (28Y0) was maximum at 330 nm and diminished linearly at longer wavelengths. The major loss of tryptophan (80%) occurred at 290 nm, but destruction was observed throughout the UVA range. Tyrosine was 35% destroyed at 290 nm but decreased sharply to only 50 at 330 nm. A constant loss of histidine (20%) was seen at all wavelengths from 290 to 360 nm, with some loss (7–8%) even at 400 nm. These action spectra show that the human lens WI fraction contains a collection of protein-bound UVA sensitizers that can cause protein photodamage similar to that seen in cataractous lenses.  相似文献   

6.
There has been considerable interest in the photochemistry of tryptophan in connection with ultraviolet inactivation of enzymes. Earlier flash photolysis work has demonstrated that the hydrated electron (e-aq) is an initial product in the irradiation of indole derivatives, accompanied by a longer-lived transient absorption near 500 nm attributed to an aromatic radical species[1–5]. Similar transients were observed in a recent flash photolysis study of lysozyme[6] in which it was proposed that inactivation is a consequence of electron ejection from 1 to 2 essential tryptophan residues in the active center. However, there has been uncertainty concerning the tryptophan radical structure and its relationship to the triplet state and radical spectra reported for tryptophan photolysis in low-temperature rigid media. This note reports a flash photolysis investigation of L-tryptophan (Trp) and 1-Methyl-L-tryptophan (1-MeTrp) undertaken to clarify these points. The flash photolysis apparatus and methods employed are described in Ref. [6].  相似文献   

7.
Hydrogen sulfide oxidation experiments were conducted in O2/N2 at high pressure (30 and 100 bar) under oxidizing and stoichiometric conditions. Temperatures ranged from 450 to 925 K, with residence times of 3–20 s. Under stoichiometric conditions, the oxidation of H2S was initiated at 600 K and almost completed at 900 K. Under oxidizing conditions, the onset temperature for reaction was 500–550 K, depending on pressure and residence time, with full oxidization to SO2 at 550–600 K. Similar results were obtained in quartz and alumina tubes, indicating little influence of surface chemistry. The data were interpreted in terms of a detailed chemical kinetic model. The rate constants for selected reactions, including SH + O2 ⇄ SO2 + H, were determined from ab initio calculations. Modeling predictions generally overpredicted the temperature for onset of reaction. Calculations were sensitive to reactions of the comparatively unreactive SH radical. Under stoichiometric conditions, the oxidation rate was mostly controlled by the SH + SH branching ratio to form H2S + S (promoting reaction) and HSSH (terminating). Further work is desirable on the SH + SH recombination and on subsequent reactions in the S2 subset of the mechanism. Under oxidizing conditions, a high O2 concentration (augmented by the high pressure) causes the termolecular reaction SH + O2 + O2 → HSO + O3 to become the major consumption step for SH, according to the model. Consequently, calculations become very sensitive to the rate constant and product channels for the H2S + O3 reaction, which are currently not well established.  相似文献   

8.
Abstract The 83 μM hematoporphyrin (HP)-sensitized photooxidation of 0.1 mM tryptophan in aqueous solution buffered at pH 7.4 or in binary mixtures of phosphate buffer and organic solvents of higher (formamide) or lower (N,N-dimethylformamide, methanol, ethanol, tetrahydrofuran) polarity proceeds by a pure singlet oxygen (1O2) mechanism as suggested by azide quenching experiments, the rate-enhancing action of deuterated solvents, and the lack of any significant reaction between triplet HP and tryptophan. Both the first-order rate constant of the photoprocess and the photooxidation quantum yield (φ= 0.011 in phosphate buffer at pH 7.4) increase when the medium polarity is increased (e.g. φ= 0.024 in 90% formamide); this results mainly from the greater quantum yield of 1O2 generation and the longer lifetime of 1O2. The intrinsic reactivity of 1O2 with tryptophan is independent of formamide concentration. A moderate decrease in the medium polarity (e.g. in the range 0-30% methanol) enhances the efficiency of tryptophan photooxidation (φ= 0.014 in 30% methanol) as a result of the enhanced quantum yields of triplet HP and 1O2 formation. In contrast, the overall photooxidation rate is depressed at high concentrations of low-polarity organic solvents (e.g. φ= 0.0039 in 90% methanol) due to a 5.5-fold drop of the rate constant for the 1O2-tryptophan reaction which counteracts the enhancement of the lifetime and quantum yield of triplet HP and 1O2. The solvent composition also affects the equilibria between monomeric and multimeric forms of HP. However, under our experimental conditions, the aggregation state of HP appears to exert only a minor influence on the efficiency of tryptophan photooxidation.  相似文献   

9.
The marker enzyme of the peroxisome—a phylogenetically old yet only recently discovered cell organelle—is catalase, a hemoprotein which decomposes hydrogen peroxide catalatically as well as peroxidatically. In the peroxisomes, catalase is associated with H2O2-producing oxidases and other enzymes. Also in parenchymal cells such as liver and kidney cells part of the reduction of oxygen occurs via formation of H2O2. A central role in peroxisomal H2O2-metabolism is played by the active intermediate, catalase-Fe3+-H2O2, (Compound I), which is distinguished from free catalase by specific absorption bands. Organ photometry on intact hemoglobin-free perfused rat liver in order to measure Compound I selectively provides a direct insight into the dynamics of the H2O2 metabolism which takes place in the range of nanomolar concentrations. Endogenously, 1g of liver forms approximately 50 nmol of H2O2 per min. The turnover number, which in the steady state is < 10 min?1 in the cell as compared to > 108 min?1 for the isolated enzyme with an excess of substrate, can be increased to approximately 102 min?1 by intracellular stimulation of the H2O2 production (e.g. by glycolate or urate). The peroxidatic oxidation of hydrogen donors (e.g. methanol and ethanol), favored relative to the catalase pathway at low turnover numbers, is of importance in normal metabolism and in pathological conditions.  相似文献   

10.
Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812?±?64 nm with moderate protein encapsulation efficiency of 55.42?±?3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.  相似文献   

11.
Effects of selenium (Se) deficiency on the sensitivity of murine leukemia L1210 cells to broad band UVA/B radiation (310–400nm) have been investigated. Cells rendered glutathione peroxidase (GPX) deficient by shortterm (2–3week) growth in 1% serum/RPMI medium without added Se [LSe(-) cells] were found to be much less resistant to clonally assessed UVA/B lethality than Se-supplemented controls [LSe(+) cells]. By contrast, long-term (>20 week) Se-deprived [L'Se(-)] cells whose catalase (CAT) activity was elevated >100-fold were far more resistant to UVA/B than LSe(+) cells. Similar trends were observed for cells irradiated in 1% serum/RPMI or Hank's medium. Whereas the CAT inhibitor 3-amino-1,2,4-triazole had no effect on LSe(+) photosensitivity, it produced a large increase in L' Se(-) photosensitivity. These findings are consistent with H2O2 in-termediacy in photokilling and suggest that L1210 cells depend mainly on GPX for protection against this species but switch to overexpressed CAT after chronic Se deprivation. In agreement with this, steady-state H2O2 levels measured by H2O2 electrode during UVA/B exposure were higher in LSe(-) than LSe(+) suspensions but much lower (barely detectable) in L' Se(-) suspensions. Cytotoxic effects of UVA/B and variations thereof resulting from Se manipulation could be mimicked by treating cells with glucose oxidase in the presence of D-glucose, providing further support for H2O2 involvement. Whether UVA/B-generated H2O2 is directly cytotoxic or gives rise to a more damaging species such as hydroxyl radical (HO) is presently unknown.  相似文献   

12.
The discovery of a novel superoxide dismutase (SOD) mimic which demonstrates SOD activity, chemical stability in H2O2 solution and long half‐life in circulation is reported. The SOD mimic consists of a manganese porphyrin (MnP) with SOD activity and a polymer (poly (styrene‐co‐maleic anhydride); SMA) with biological characteristics. The SOD activity of SMA‐MnP at pH = 8.1 measured using the stopped‐flow kinetic analysis technique to monitor the decay of superoxide directly was 1.1 (± 0.1) × 106 M‐1 sec‐1. It is postulated that the reduction by O2·− of the oxidized SMA‐Mn(III) is slow, while the oxidation of the reduced SMA‐Mn(II) by O2·− is very fast. The retention times of SMA‐MnP in the circulation of rabbits were determined. In vivo, SMA‐MnP that binds to the warfarin site on albumin showed an enhanced half‐life in the circulation. Additionally, in vitro SMA‐MnP indicated an excellent stability to H2O2. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Irradiation of mouse spermatozoa by 630 nm He-Ne laser was found to enhance the intracellular calcium levels and fertilizing potential of these cells. The effect of light on calcium transport and on fertilization rate was abrogated in the absence of Ca2+during the irradiation time, indicating that the effect of light is Ca2+dependent. The stimulatory effect of light on Ca2+uptake was abolished in the presence of a voltage-dependent Ca2+-channel inhibitor nifedipine, indicating the involvement of a plasma membrane voltage-dependent Ca2+channel. Furthermore, the stimulatory effect of light was completely inhibited by the mitochondrial uncoupler FCCP, indicating that laser irradiation might affect the mitochondrial Ca2+transport mechanisms. A causal association between laser irradiation, reactive oxygen species (ROS) generation and sperm function was indicated by studies with ROS scavengers, superoxide dismutase (SOD) and catalase, and exogenous hydrogen peroxide. The SOD treatment, which enhanced H2O2 production, resulted in increased Ca2+uptake and enhanced fertilization rate. On the other hand, catalase, which decomposes H2O2, impaired the light-induced stimulation in Ca2+uptake and the fertilization rate. Taken together, the data suggest that H2O2 might be involved in the irradiation effects, and indeed laser irradiation enhances the production of H2O2, by spermatozoa. These results indicate that the effect of 630 nm He-Ne laser irradiation is mediated through the generation of H2O2 by the spermatozoa and that this effect plays a significant role in the augmentation of the sperm cells' capability to fertilize metaphase H-arrested eggs in vitro.  相似文献   

14.
The efficiency of several porphyrins at 10 μM and 83 μM as sensitizers of the photooxidation of 0.1 mM tryptophan and histidine via a singlet oxygen-mechanism was studied in pH 7.4-buffered aqueous solutions and in aqueous dispersions of Triton X-100 micelles. The porphyrins were either solubilized in the bulk aqueous medium or associated with the micellar phase, whereas the amino acids were always located in the aqueous phase. With those porphyrins, such as uroporphyrin I, meso-tetra (4-sulfonatophenyl)porphine, meso-tetra(4-carboxyphenyl)porphine and meso-tetra)N,N,N-trimethylanilinium)porphine, which are > 98% monomeric in both media, the efficiency of histidine photooxidation was independent of the site of O2(1Δg) generation, as shown by the closely similar values for the photooxidation rate constant and oxygen-consumption quantum yield in the presence and absence of Triton micelles; the same indications were provided by photokinetic experiments with tryptophan. Actually, laser flash photolysis studies showed that the micelle-incorporation of the above mentioned porphyrins brought about only minor changes in their photophysical properties, including the relative yield of O2(1Δg) generation. On the other hand, hematoporphyrin IX, its Zn2+-complex, and coproporphyrin III are largely aggregated in homogeneous aqueous solution; their incorporation into Triton micelles caused an increase of the triplet quantum yield and an enhancement of the oxygen-consumption quantum yield and photooxidation rate constant for both histidine and tryptophan. The lower photosensitizing efficiency of aggregated porphyrin species in comparison with the corresponding monomeric porphyrin was confirmed by measuring the initial rate and quantum yield of oxygen consumption upon irradiation of 1 mM histidine and tryptophan in the presence of different hematoporphyrin concentrations within the 0.3-100μM range.  相似文献   

15.
The optical transient and kinetics characterizations of the transients formed in the reaction of OH with benzotrifluoride (BTF) were performed by a laser flash photolysis technique. The results indicated that the formation of π‐type adduct of C6H5(OH)CF3 was the major reaction channel, and the δ‐type adduct of C6H5CF3OH formation was an additional minor process in the oxidation reaction of BTF attacked by OH radicals yielded from the photolysis of H2O2. Addition of OH to the CF3 group led to the fluoride ion elimination to yield α,α‐difluorophenylcarbinol (C6H5CF2OH). Trifluoromethylphenol (HOC6H4CF3) of meta‐, para‐ and ortho‐substituted isomers resulted from the addition of OH to the BTF aromatic ring.  相似文献   

16.
Using the chemiluminescence oxidation of U(IV) and H2O2 with xenon trioxide as a model, it has been found that during the photolysis of solutions of UO2SO4 in sulfuric acid in the absence of any organic compounds, the accumulation of U(SO4)2 and H2O2 takes place as a result of the reaction of the primary products of the photoreduction of uranyl ion,i.e., UO2 + and the OH radical.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 751–754, April, 1994.The work was financially supported by the Russian Foundation for Basic Research, Project 93-03-12291.  相似文献   

17.
Polyvinylalcohol crosslinked with terephthaldicarboxaldehyde and was modified with 2-amino-4,6-dichloro-s-triazine. Optimum conditions for immobilization of catalase on modified and gelatine-coated modified polyvinylalcohol were investigated. Activity variations with respect to pH, temperature, stability behavior, andk m(appl) values were investigated for the native and immobilized catalases. Rate constants for H2O2 decomposition and for inactivation of immobilized catalase were determined using a discontinuous batch-type reactor. The influence of H2O2 concentration on the catalase inactivation was investigated.  相似文献   

18.
THE PHOTOLYSIS RATES OF SOME DI- AND TRIPEPTIDES OF TRYPTOPHAN   总被引:1,自引:0,他引:1  
We have measured the relative rates of photolysis of free tryptophan (trp), the dipeptides Gly-Trp, Trp-Gly, Leu-Trp, and Trp-Leu, and the tripeptides Gly-Trp-Gly and Leu-Trp-Leu. The photolyses were performed in neutral 0.1 mM aqueous solutions at 25°C using monochromatic 290 nm Xe arc radiation. Tryptophan loss was monitored by absorption, fluorescence and phosphorescence spectroscopy. The rate of tryptophan fluorescence loss was found to be different in the di-and tripeptides than in tryptophan monomer. These rate differences depended on both the identity of the neighboring amino acid (gly or leu) and on the nature of the linkage, e.g., the rate of Gly-Trp photolysis was more than 10 times greater than the rate of Trp-Gly photolysis. Degassing was found to markedly reduce (factor of 8) the photolysis rates of Trp, Trp-Gly, and Trp-Leu, but degassing only slightly reduced (less than a factor of 2) the photolysis rates of the other di-and tri-peptides. Photochemical product structures were not determined, but absorption and fluorescence spectra were obtained and products could be inferred in some cases by comparison with data of previous workers. The products appeared to differ greatly among the various peptides studied; Trp, Trp-Gly, and Trp-Leu gave oxidation products, while Gly-Trp and Leu-Trp apparently gave ring closure products, not requiring oxygen.  相似文献   

19.
Abstract— The quantum yields and lifetimes of the fluorescence of tyrosine and tryptophan were determined in D2O-H2O and glycerol-H2O solvent mixtures of varying composition from 10 vol.% to 100% H2O at 15°C. Forboth amino acids the ratio of the quantum yields in D2O and H2O (i.e., qD/qH) was smaller than the ratio of the corresponding lifetimes (D/H). For tyrosine the ratio of the quantum yields in glycerol and H2O (qG/qH) was also smaller than the corresponding G/H ratio, but for tryptophan qG/gHG/H. The proximity of the q vs. plots for tyrosine in the two solvent mixtures indicates that at 15°C neither D2O nor glycerol, in the pure state or when diluted with H2O, quench tyrosine significantly. However, H2O quenches tyrosine by a dynamic process, which increases both the radiative and the nonradiative rate constant. The quenching action is attributed to a tyrosine-H2O exciplex, whose formation is independent of bulk viscosity and dielectric constant. Unlike tyrosine, tryptophan is quenched weakly by D2O by a static process at 15°C (i.e., involving no change in), but H2O quenches tryptophan much more efficiently by a dynamic process, which involves the nonradiative rate constant, but not the radiative constant. These results are explained on the basis of electrostatic complexation of the ammonium group to the carbon atom adjacent to the ring nitrogen with a lifetime which is longer thanin D2O but shorter thanin H2O, with solvent reorientation possibly also being an important factor in the quenching. This explanation is consistent with the fact that concentrated (8 M) urea increases q andof aqueous tryptophan ? 15–20%, while guanidine hydrochloride (6.4 M) has the opposite effect, i.e., it decreases q and t of tryptophan ? 15–20%, and with the fact that neither 8 M urea nor 6.4 M guanidine hydrochloride affects any fluorescence parameter of tyrosine at all.  相似文献   

20.
The aconitase activity of the cytoplasmic iron regulatory protein-1 of NCTC 2544 keratinocytes is effectively inhibited by physiological doses of UVA. The time course of the photoinactivation is biphasic. A fast step is first observed corresponding to about 50% inactivation after exposure to 5 J/cm2of UVA followed by a much slower photoinactivation at higher doses. The water-soluble antioxidant N-acetylcysteine only partially inhibits the pho-toinduced inactivation of the cytoplasmic aconitase function, whereas the lipophilic vitamin E, the iron chelator, desferrioxamine and the superoxide dismutase inhibitor, diethyldithiocarbamate do not protect at all. As a consequence, reactive oxygen species such as O2-, H2O2 and lipid peroxides and hydroperoxides seem to play a rather minor role in the inactivation induced by the UVA pho-tooxidative stress although an oxidative stress produced by O2- H2O2 is known to inhibit reversibly and effectively cytoplasmic aconitase activity in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号