首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The two octahedral complexes SnCl4 · 2(O)P(NR2)2OCH2CF3 (R = Me (1) or Et (2)) have been prepared from SnCl4 and the ligands (R2N)2P(O)OCH2CF3 in chloroform solution. Both adducts have been characterised by (31P and 119Sn) NMR, IR spectroscopy and elemental analysis. The NMR data show that the complexes exist as mixtures of cis and trans isomers in solution with the latter isomer being the predominant species. The structure of 1 has been determined by X-ray crystallography. Accordingly, the structure is centrosymmetric and the two ligands are bound trans to each other in the octahedral tin complex. DFT/B3LYP calculations show that trans configuration does indeed lead to the lowest energy species. Comparison of the structural, NMR and theoretical data of both complexes with those related to SnCl4 · 2L (L = (Me2N)3P(O) and (Me2N)2P(O)F) further supports the important effects of the nature of the substituents in the ligand on the stereochemistry of the complex formed.  相似文献   

2.
The preparation and characterization of a series of octahedral complexes [SnF4L2] (L = (Me2N)3PO (1), L = (R2N)2P(O)F; R = Me (2); Et (3) or L = R2NP(O)F2; R = Me (4); Et (5)) are described. These new adducts have been characterised by multinuclear (19F, 31P and 119Sn) NMR, IR spectroscopy and elemental analysis. The NMR data particularly the 19F NMR spectra showed that the complexes exist in solution as mixtures of cis and trans isomers. The solution behaviour of the complexes studied by variable temperature NMR in the presence of excess ligand indicated that, unlike in the SnCl4 analogues, the ligand exchange at room temperature is slow for 13 and fast only for 4 and 5. The metal–ligand exchange barriers in [SnF4L2] and [SnCl4L2] systems were estimated and compared. The results indicate that in addition to the difference in the Lewis acidity between SnF4 and SnCl4 the nature of the substituents (fluorine atoms) on the phosphorus atom of the ligand can contribute considerably to the lability of the complex obtained.  相似文献   

3.
Abstract

Four octahedral complexes of the type SnCl4.2L [L = (R2N)3P(E): E = Se; R = Me(1), Et(2) and E = S; R = Me(3), Et(4)] have been studied in solution by multinuclear (31P, 77Se, and 119Sn) NMR spectroscopy. 31P and 77Se NMR data were informative of changes associated with complex formation. The solution structure of the complexes was confirmed by their 119Sn NMR spectra that showed two triplet features for each complex, attributed to a mixture of the expected cis and trans isomers. The triplet signal is due to the coupling with two equivalent phosphorus atoms, consistent with an octahedral geometry around the tin center. In addition, density functional theory (DFT)/B3LYP calculations have been carried out to support the interpretations of NMR data. The results are discussed and compared with those reported for related complexes.

GRAPHICAL ABSTRACT   相似文献   

4.
Abstract

The reaction of SnCl4 with β-chlorovinyl aldehydes in anhydrous dichloromethane gave a series of octahedral complexes of the general formula SnCl4·2L (L = aldehyde). The adducts have been characterized in solution using multinuclear (1H, 13C, and 119Sn) NMR and IR spectroscopy. Solution NMR studies show that the complexes undergo rapid ligand dissociation at ambient temperature. Ligand exchange is slowed significantly at low temperature, such that, in most of the complexes, it is possible to identify both the cis and trans isomers with predominance of the cis form. The magnitude of the metal-ligand interaction was estimated on the basis of 119Sn NMR chemical shifts and used to classify the aldehydes studied according to their Lewis basicity.  相似文献   

5.
Abstract

The reaction of bis(anilino)phosphine oxide (C6H5NH)2P(O)H, 1 with Bu2 nSnCl2 in the presence of an excess of triethylamine (TEA) in dry tetrahydrofurane (THF) yields the novel N,O-bonded tin complex Bu2 nSn[NPh(O)P(H)NPh(HNEt3)]2, 2. TEA is used as a base to deprotonate the phosphazane ligand and is separated as Et3NH+Cl?, whereas HTEA+ exists in the final product 2 and act as a charge balancing and H-bond structure–directing agent. This new compound has been fully characterized by means of IR, MS, and multinuclear (1H, 31P, and 119Sn NMR) spectroscopy.  相似文献   

6.
Complexes of beryllium chloride and nitrate with (Me2N)2P(O)F were characterized in solution by multinuclear NMR spectroscopy and in some cases by IR spectroscopy and conductimetry. 31P and 19F NMR spectra were informative of changes associated with complex formation revealing resonances consistent with different species in solution and suggest an equilibrium between these species in both beryllium derivatives. These compounds show narrow lines in the solution 9Be NMR spectra, indicative of a highly symmetric environment for beryllium. The presence of the different species was more pronounced in beryllium chloride complexes. The results are compared to those reported in the literature for hexamethylphosphoramide (HMPA).  相似文献   

7.
Novel heteroscorpionate-containing tin and organotin(IV) complexes, [SnRnX3 − n(L)], R = Me, Bun, Ph, or cy; X = Cl, Br or I, n = 0, 1, 2 or 3; L = bis(pyrazol-1-yl)acetate (bpza) or bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), have been synthesized and characterized by spectral (IR, 1H, 13C and 119Sn NMR, 119mSn Mössbauer) and analytical data. In [SnI3(bdmpza)], the ligand is fac-N,N′,O-tridentate, the three iodine atoms thus also fac about the six-coordinate tin(IV) atom. Neutral bpzaH reacts with BunSnCl3, PhSnCl3 and SnCl4 in Et2O in the absence of base, yielding 1:1 adducts [XSnCl3(bpzaH)] (X = R or Cl).  相似文献   

8.
Abstract

The synthesis of octahedral complexes [SnCl4L2] (L = R2NP(O)(OCH2CF3)(O-p-tolyl): R2N = Me2N (1), Et2N (2), CH2(CH2CH2)2N (3), and O(CH2CH2)2N (4), or L = R2NP(O)(OCH2CF3)(O-p-PhNO2): R2N = Me2N (5), Et2N (6), and O(CH2CH2)2N (7) is described. The new adducts have been characterized by multinuclear (31P, 19F, 119Sn) NMR, IR spectroscopy, and elemental analyses. The solution NMR data show the presence of a mixture of cis and trans isomers. The structure of the complexes in solution was further confirmed by 119Sn NMR spectra, which display a triplet for each isomer, indicating an octahedrally coordinated tin center. The effects of the nature of R and Ar substituents on the donor ability of the P=O group in the ligands R2NP(O)(OCH2CF3)(OAr) were investigated on the basis of 119Sn NMR chemical shifts and used to classify these ligands according to their Lewis basicity.  相似文献   

9.
10.
Abstract

Reactions of the salts K2SN2 and K[(NSN)R] (R = ′Bu, SiMe3 and P′Bu2) with organoelement chlorides R′R′ěl have been used to prepare four series of model sulfur diimides: R′R″E(NSN)ER″R′, ′Bu(NSN)ER″R′, Me3Si(NSN)E″R′ and tBu2P(NSN)ER″R′, respectively (E = C, Si, Ge, Sn; R′ and R″ = alkyl or aryl group). All compounds have been characterized by ′H and 13C NMR and—if possible—by 31P, 29Si and 119Sn NMR spectroscopy. The configuration (Z or E) of the substituents R and E″R′ has been assigned in several cases using tBu(NSN)tBu (1) as a reference. The E,Z assignment of 1H, 13C and 15N nuclei in 1 is based on selectively 1H-decoupled refocused INEPT 15N NMR and two-dimensional (2D) 13C/1H heteronuclear shift correlations. The sulfur diimides under study are in general fluxional in solution.  相似文献   

11.
The complexes CdL4(ClO4)2 (1), CdL2(NO3)2 (2), and CdL2Cl2 (3) (L = (Me2N)3P(Se)) have been prepared and characterized by elemental analysis, conductivity measurements, IR, and multinuclear (31P, 77Se, and 113Cd) NMR spectroscopy. 31P and 77Se NMR data were informative of changes associated with complex formation. The structure of the prepared complexes was further confirmed in solution by their 113Cd NMR spectra, which show a quintuplet for the perchlorate complex and a triplet for each of the nitrate and chloride complexes due, respectively, to coupling with four and two equivalent phosphorus atoms, consistent with a four coordinate tetrahedral geometry for the cadmium center. The NMR data are discussed and compared with those reported for related complexes.  相似文献   

12.
The reaction of dichloroethylphenyltin(IV), Ph(Et)SnCl2, with phenanthroline monohydrate (phen·H2O) in chloroform, in 1:1 mole ratio, afforded [Ph(Et)SnCl2(phen)]. The crystal structures of dichloroethylphenyltin(IV) and its phenanthroline adduct were studied by X‐ray diffraction. In Ph(Et)SnCl2 the tin atom is in a distorted tetrahedral environment, the distortion probably being imposed by weak intermolecular Sn· · ·Cl interactions. In [Ph(Et)SnCl2(phen)] the tin atom is in an octahedral trans‐C2, cis‐Cl2, N2 environment and weak intermolecular C–H· · ·Cl interactions connect the molecules throughout the lattice. Spectroscopic studies in solution (1H, 13C and 119Sn NMR) were also carried out; the 1H and 13C NMR data in dimethylsulfoxide suggest that [Ph(Et)SnCl2(phen)] remains at least partially undissociated in this solvent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Data on the NMR spectroscopy of C, N, O, Si, P, and Sn donor atoms of platinum metal complexes in solutions are surveyed. The chemical shift of a donor atom mainly depends on the ligand in the trans-position (due to the trans-effect). The chemical shift of a donor atom on a particular coordinate of the complex (coordinate shift, CSh) is an attribute of this coordinate and can be used to identify such a coordinate in platinum metal complexes and to determine the structures of complexes. Based on the known data, CSh diagrams were composed for 1H, 13C, 14N, 17O, 19F, 31P, and 119Sn. Examples of using the CShs for determining the structures of platinum metal complexes in solutions are presented.  相似文献   

14.
Abstract

Reaction of tri-n-butyl tin(IV) chloride with the sodium salt of Schiff bases [salicylidene-2-aminopyridine (sapH), salicylidene-2-amino-4-picoline (sapicH), salicylidene-2-methyl-1-aminobenzene (o-smabH), salicylidene-4-methyl-1-aminobenzene (p-smabH), salicylidene-1- aminobenzene (sabH), salicylidene-3-nitro-1-aminobenzene (snabH)] in MeOH-C6H6 mixture in 1:1 molar ratio produced complexes of the type [Bun 3Sn(sb)] (where sb = Schiff bases). All complexes obtained were characterized by elemental analysis (C, H, N, and Sn), infrared (IR), nuclear magnetic resonance (NMR; 1H, 13C, and 119Sn), and TOF-MS spectroscopic studies. These complexes were found to be monomeric, colored viscous liquids and are soluble in polar solvents (methanol, ethanol, DMSO, and DMF). On the basis of 119Sn NMR observations, a five coordination geometry around tin(IV) atom in these complexes is proposed tentatively.  相似文献   

15.
Some organotin(IV) triazolates of general formula RnSn(L)4 − n (where R = Me, n-Bu and Ph for n = 2; R = Me, n-Pr and n-Bu for n = 3 and HL = 3-amino-5-mercapto-1,2,4-triazole) have been synthesized by the reaction of R2SnCl2/R3SnCl with NaL in 1:2/1:1 molar ratio. Whereas, Oct2SnL2 has been synthesized azeotropically by the reaction of Oct2SnO and HL in 1:2 molar ratio. As good single crystals were not obtained, a large number of experimental techniques, viz. UV/Vis, IR, far-IR, multinuclear (1H, 13C and 119Sn) NMR and 119Sn Mössbauer spectroscopic studies, were used to accomplish a definitive characterization and determination of their most probable structures. In these compounds triazole acts as a monoanionic bidentate ligand, coordinating through Sexo and N(4). The IR and 119Sn Mössbauer spectroscopic studies allow us to deduce a highly distorted cis-trigonal-bipyramidal structure for R3SnL and a distorted skew trapezoidal-bipyramidal structure for R2SnL2, in the solid state. However, 1H, 13C and 119Sn NMR spectral studies revealed that weak bonding between tin and N(4) is further weakened in the solution leading to pseudo-tetrahedral/tetrahedral structure.  相似文献   

16.
Abstract

The organotin(IV) complexes, SnPh2La (1), SnMe2La (2), SnBu2La (3), SnPh2Lb (4), SnMe2Lb (5), SnPh2Lc (6), SnMe2Lc (7), and SnBu2Lc (8) were obtained by reaction of SnR 2Cl2 (R = Ph, Me, and Bu) with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2La), 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide (H2Lb), and 1-(2-hydroxy-3-methoxybenzylidene)-4-phenylthiosemicarbazide (H2Lc). The synthesized complexes have been investigated by elemental analysis, IR, 1H NMR, and 119Sn NMR spectroscopy. The data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination number of tin is 5. The in vitro antibacterial activities of the ligands and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and compared with the standard antibacterial drugs.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures and tables]  相似文献   

17.
Abstract

Five new complexes ZnL2(ClO4)2 (1), CdL2(ClO4)2 (2), CdL2(BF4)2 (3), CdLCl2 (4), and CdL(NO3)2 (5) [L = ((Me2N)2PSe)2NMe] have been synthesized and characterized by elemental analysis, infrared (IR) and multinuclear (31P, 77Se, and 113Cd), and nuclear magnetic resonance (NMR) spectroscopy. The 31P and 77Se NMR data showed that the title ligand is coordinated in a bidentate fashion to the metal center via its both P=Se groups. The solution structure of the cadmium complexes was further confirmed by its 113Cd NMR spectra, which displayed a quintuplet for the perchlorate complex and a triplet for each of the nitrate and chloride complexes, respectively due to coupling with four (two ligands) and two (one ligand) equivalent phosphorus nuclei, consistent with a four-coordinate tetrahedral geometry for the cadmium center. The results are discussed and compared with the corresponding oxo and thio analogues.  相似文献   

18.
Two novel dinuclear organotin(IV) complexes [n-Bu2Sn(imda)(H2O)]2·Bipy (1) and [n-Bu2Sn(imda)(H2O)]2·Phen (2) [H2imda = iminodiacetic acid, Bipy = 2,2′-bipyridine and Phen = 1,10-phenanthroline] were synthesised and characterized employing IR, 1H, 13C, 119Sn NMR, and 119Sn Mössbauer spectroscopic and elemental analyses. Single crystal X-ray crystallography of 1 has confirmed that it is a binuclear Sn(IV) species formed via carboxylate bridges where each metal adopted a seven coordinate distorted pentagonal bipyramidal geometry. The iminodiacetate dianion (imda2−) acts as a potential tridentate [N,O,O] carboxylate bridging ligand. The packing revealed that the additional α-diimine (Bipy or Phen) does not coordinate to metal ion. However, its presence in the crystal lattice as spacer helps for the formation of a supramolecular framework by bringing the two binuclear species close enough through extensive H-bonding. The in vitro cytotoxicity of compounds 1 and 2 indicate better results than cisplatin against three tumor cell lines investigated.  相似文献   

19.
Reactions of 2-(1H-benzimidazol-2-yl)phenol (1) and SnPh3Cl, SnPh2Cl2 and SnCl4 were investigated. One tetracoordinated triphenyltin(IV) compound: triphenyltin-2-(1H-benzimidazol-2-yl)phenolate] (3) and its adducts: [O → Sn] dimethylsulfoxide triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (4), [O → Sn] aqua triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (5) [O → Sn] ethanol triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (6), [N → Sn] pyridine triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (7), where 1 acts as a monodentate ligand bound through the phenol oxygen, were obtained. In the pentacoordinated compounds 4-7, the tin atom has tbp geometry. The three phenyl groups are in equatorial positions, whereas the benzimidazole and the Lewis base are in apical positions. Two hexacoordinated tin compounds: diphenyltin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (8), dichlorotin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (9) bearing two bidentate ligands are reported. The coplanar ligands in 8 and 9 form six membered rings by oxygen and nitrogen coordination. The tin geometry is all-trans octahedral. In 8 the two phenyl groups, and in 9 the two chlorine atoms are perpendicular to the plane of the ligands. Compounds were identified in solution mainly by 1H, 13C and 119Sn NMR and in the solid state by X-ray diffraction analysis.  相似文献   

20.
New mono-, di- and tri-organotin(IV) derivatives containing the neutral bis(2-pyridylthio)methane ligand, [(pyS)2CH2] and tris(2-pyridylthio)methane ligand, [(pyS)3CH] have been synthesized from reaction with SnRnCl4−n (R = Me, nBu, Ph and Cy, n = 1-3) acceptors. Mono-nuclear adducts of the type {[(pyS)2CH2]RnSnCl4−n} and {[(pyS)3CH]RnSnCl4−n} have been obtained and characterized by elemental analyses, FT-IR, ESI-MS, multinuclear (1H and 119Sn) NMR spectral data. The 1H and 119Sn NMR and ESI-MS data suggest for the triorganotin(IV) derivatives a complete dissociation of the compounds in solution. The mono- and di-organotin(IV) derivatives show a greater stability in solution, and their spectroscopic data are in accordance with the existence of six-coordinated RSnCl3N2 or R2SnCl2N2 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号