首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation and Crystal Structure of [Co(NH3)6]2P4O13 7·5H2O Single crystals of [Co(NH3)6]P4O13 · 5 H2O were obtained by diffusion controlled growth. To this end sodium polytetraphosphate was prepared by column chromatography and allowed to react with [Co(NH3)6]Cl3. The compound [Co(NH3)6]2P4O13 · 5 H2O contains the novel isolated polytetraphosphate anion. The expected systematic variation in bond length in the P? O? P bridges of the poly tetraphosphate anion was verified. The conformation of the anion is discussed.  相似文献   

2.
Simple strontium peroxodisulfate SrS2O8 · 4H2O was synthesized by the reaction of solid Sr(OH)2 · 8H2O taken in 30% excess with an aqueous solution of (NH4)2S2O8; simple magnesium peroxodisulfate MgS2O8 · 6H2O was synthesized by the reaction of an aqueous solution of BaS2O8 with a stoichiometric amount of MgSO4 · 7H2O. Persulfate ammine complexes [M(NH3)4]S2O8 (M = Zn, Cu) were prepared in concentrated aqueous ammonia from [Zn(NH3)4](OH)2, [Cu(NH3)4](OH)2, and an ammoniac solution of (NH4)2S2O8. The compounds were characterized by X-ray powder diffraction (pRSA) and vibrational (IR and Raman) spectroscopy. Their stability was studied during storage and in DTA experiments. The [Zn(NH3)4]S2O8 structure was solved. Its crystals are orthorhombic, a = 10.5512(8) Å, b = 12.8039(12) Å, c = 8.0448(5) Å, V = 1086(15) Å3, Z = 4, space group Pna21. The compound is built of [Zn(NH3)4]2+ complex cations and S2O 8 2? persulfate anions. In a cation, Zn-N bond lengths are within 2.04(2)–2.056(14) Å. In an anion, the lengths of S(1)–O(4), S(2)–O(5), and O(4)–O(5) bridging bonds are, respectively, 1.676(14), 1.672(16), and 1.465(16) Å; the other S–O bond lengths are within 1.409(14)–1.443(12) Å; the S(1)O(4)O(5)S(2) torsion angle is 140.8(7)°.  相似文献   

3.
Polynuclear Cobalt Complexes. II. Preparation and Structure of [(tren) (NH3)Co(O2)Co(NH3) (tren)](SCN)4 · 2H2O The title compound is obtained on oxygenation of [Co(tren)(H2O)2]2+ in 6M aqueous ammonia or by ligand exchange starting from [(NH3)5Co(O2)Co(NH3)5]-(NO3)4. An X-ray structure determination was made. The substance forms monoclinic crystals, space group P21/c, lattice constants a=10,135, b=8,473, c=19,484 Å, β=108,58°, with two formula units in the cell. The final R is 0,066. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar; the Co? O? O angle is 111,5°. The tertiary nitrogen atoms of both chelate groups are cis to the O2 bridge, as found in doubly bridged [(tren)Co(O2,OH)Co(tren)](ClO4)3 · 3H2O. On acidification in solution, the singly bridged cation [(tren) (NH3)CoO2Co(NH3)(tren)]4+ (a) loses the bound O2 completely. But unlike the doubly bridged cation b , the rate of dissociation of a is independent of pH (Fig. 5). At higher pH (8–10) bridging a→b (Fig. 2) occurs. Both reactions must have the same rate determining step, the first order rate constants being of the order of 2 · 10?3 s?1 (25°, 0,35M KCl).  相似文献   

4.
Reaction of [M(NH3)6]Cl3 (M = Co, Rh, Ir) and [Ir(NH3)5(OH2)]Cl3 with (NH4)2C2O4 · H2O in aqueous solution resulted in the isolation of [M(NH3)6]2(C2O4)3 · 4 H2O and [Ir(NH3)5(OH2)]2(C2O4)3 · 4 H2O, respectively. The complexes have been characterized by X‐ray crystallography, IR and UV/VIS spectroscopy. The isomorphous compounds crystallize in the orthorhombic space group Pnnm (No. 58). Four molecules of crystal water are involved in an extended three‐dimensional hydrogen bonding network. The librational modes of the lattice water around 600 cm–1 allow the characterization of [Ir(NH3)6]2(C2O4)3 · 4 H2O and [Ir(NH3)5(OH2)]2(C2O4)3 · 4 H2O, respectively, by IR spectroscopy. The band around 600 cm–1 shows a significant frequency shift in the IR spectra of the hexaammine and aquapentaammine complex of iridium(III) and, by that, a distinction is possible.  相似文献   

5.
Crystal Structure of Na5P3O10 · 6 H2O Na5P3O10 · 6 H2O crystallizes triclinic in P1 with a = 1 037.0(2), b = 984.8(4), c = 761.5(3) pm; α = 92.24(7)°, β = 94.55(9), γ = 90.87(6)°; Z = 2. The structure has been determined from fourcycle diffractometer data (2 089 independent reflections, R = 0.053). All hydrogen positions have been taken from a weighted difference-fourier-syntheses. Na5P3O10 · 6 H2O forms colorless, plate-like crystals, which are twinned systematically parallel (001) and can be divided mechanically into single-crystalline portions.  相似文献   

6.
The thermal behaviour of four coordination compounds (NH4)6[Y3Fe5(C4O5H4)6(C4O5H3)6]·12H2O, (NH4)6[Y3Fe5(C6O7H10)6(C6O7H9)6]·8H2O, (NH4)6[Er3Fe5(C4O5H4)6(C4O5H3)6]·10H2O and (NH4)6[Er3Fe5(C4O6H4)6(C4O6H3)6]·22H2O has been studied to evaluate their suitability for garnet synthesis. The thermal decomposition and the phase composition of the resulted decomposition compounds are influenced by the nature of metallic cations (yttrium-iron or erbium-iron) and ligand anions (malate or gluconate).  相似文献   

7.
Two new reduced molybdenum pyrophosphates, Na28[Na2{(Mo2O4)10(P2O7)10(HCOO)10}]·108H2O ( 1 ) and Na22(H3O)2[Na4{(Mo2O4)10(P2O7)10(CH3COO)8(H2O)4}]·91H2O ( 2 ) have been synthesized and characterized by single‐crystal X‐ray diffraction. Red crystals of 1 are triclinic, space group , with a = 17.946(4) Å, b = 18.118(4) Å, c = 21.579(4) Å, α = 114.47(3)°, β = 93.54(3)°, γ = 114.39(3)° and V = 5581.8(19) Å3, and orange crystals of 2 are monoclinic, space group P21/n, with a = 21.467(4) Å, b = 23.146(5) Å, c = 24.069(5) Å, β = 101.76(3)° and V = 11708(4) Å3. They are both constructed by MoV dimers ({Mo2O4(OP)4(HCOO)} in 1 , {Mo2O4(OP)4(CH3COO)} and {Mo2O4(OP)4(H2O)2} in 2 ) and pyrophosphoric groups. Their structures can be described as two interconnected nonequivalent wheels which are approximately perpendicular, delimiting a large cavity. The larger wheel contains six MoV dimers, while the smaller one has four dimers.  相似文献   

8.
Single and Double Deprotonated Maleic Acid in Praseodymium Hydrogenmaleate Octahydrate, Pr(C4O4H3)3 · 8 H2O, and Praseodymiummaleatechloride Tetrahydrate, Pr(C4O4H2)Cl · 4 H2O Single crystals of Pr(C4O4H3)3 · 8 H2O grew by slow evaporation of a solution which had been obtained by dissolving Pr(OH)3 in aqueous maleic acid. The triclinic compound (P1, Z = 2, a = 728.63(3), b = 1040.23(3), c = 1676.05(8) pm, α = 72.108(2)°, β = 87.774(2)°, γ = 70.851(2)°, Rall = 0.0261) contains Pr3+ ions in ninefold coordination of oxygen atoms which belong to two monodentate maleate ions and seven H2O molecules. There is one further non‐coordinating maleate ion and one crystal water molecule in the unit cell. Thermal treatment of Pr(C4O4H3)3 · 8 H2O leads first to the anhydrous compound which then decomposes to the respective oxide in two steps upon further heating. Evaporation of a solution of Pr(C4O4H3)3 · 8 H2O which contained additional Cl ions yielded single crystals of Pr(C4O4H2)Cl · 4 H2O. In the crystal structure (monoclinic, P21/c, Z = 4, a = 866.0(1), b = 1344.3(1), c = 896.9(1) pm, β = 94.48(2)°, Rall = 0.0227), the Pr3+ ions are surrounded by nine oxygen atoms. The latter belong to four H2O molecules and three maleate ions. Two of the latter act as bidentate ligands.  相似文献   

9.
《Solid State Sciences》2000,2(7):701-704
Chemical preparations and main crystallographic data are reported for eight new condensed phosphates: four new cyclotriphosphates, with a general formula MnM2II(P3O9)2 · nH2O, MnBa2(P3O9)2 · 6H2O, MnCa2(P3O9)2 · 10H2O, MnCa2(P3O9)2, MnSr2(P3O9)2 · 4H2O and four other cyclotriphosphates Mn(NH4)4(P3O9)2 · 6H2O, CdK4(P3O9)2, MnK4(P3O9)2 and NiRb4(P3O9)2. Seven of them belong to previously investigated structure types.  相似文献   

10.
The reaction of ammonium heptamolybdate with hydrazine sulfate in an aqueous solution of glycine at room temperature yielded colorless crystals of (NH4)4[(NH3CH2CO)2(Mo8O28)] · 2 H2O. The crystal is monoclinic, space group C2/c (no. 15), a = 17.234 Å, b = 10.6892 Å, c = 18.598 Å, β = 108.280°, V = 3253.2 Å3, Z = 4. The crystal structure contains ammonium cations and isolated octamolybdate(4–) anions, [(NH3CH2CO)2(Mo8O28)]4–, with two zwitterionic glycine molecules as ligands.  相似文献   

11.
After a short survey of what is the present state of the cyclophosphates associated with the organic molecule NH2(CH2)4NH2, we report chemical preparation and crystal structure for a new example of such compounds. [NH3(CH2)4NH3]2P4O12.2H2O is monoclinic (S.G. : P21/n), with Z = 2 and the following unit-cell parameters : a = 7.6728(8) Å, b = 18.962(3) Å, c = 7.9789(9) Å β = 111.751(9)°. Bidimensional layer arrangement of P4O12 rings connected to the water molecules thanks to weak H-bonds run parallel to the ab plane. The organic groupements located between these inorganic planes perform the three-dimensional cohesion by NH····O hydrogen bonds.  相似文献   

12.
The organic‐inorganic hybrid nonlinear optical (NLO) material NH4B(d‐ (+)‐C4H4O5)2 · H2O (NBC) was synthesized in a borate‐carboxylic acid system. Its structure was determined by single crystal X‐ray diffraction. It crystallizes in the orthorhombic system, space group Pna21 (No. 33), with cell parameters a = 11.484(6) Å, b = 5.354(3) Å, c = 21.079(12) Å, V = 1296.0(12), Z = 4. It exhibits a three‐dimensional pseudo tunnel structure consisting of fundamental building block [B(d‐ (+)‐C4H4O5)2] anions. The small cavities are occupied by the H2O molecules and NH4+ cations, which stabilize the whole structure by O–H ··· O and N–H ··· O hydrogen bonds. The powder X‐ray diffraction (PXRD) of the crystal was also recorded. Elemental analyses, FT‐IR and FT‐Raman spectra analyses, thermal analysis, and diffuse‐reflectance spectra for the compound are also presented, as are band structures and density of states calculation. Nonlinear optical measurements indicate that the material has second harmonic generation (SHG) properties and is phase‐matchable.  相似文献   

13.
The structure of two mixed valent molybdenum phosphates, CsMo2P2O10 and K1.5Mo2P2O10 · H2O has been solved from single crystals by X-ray diffraction in the space group P21/c with a = 9.428(1), b = 9.943(2), c = 12.348(2) Å and β = 127.38(1)° for CsMo2P2O10 and a = 9.721(2), b = 9.805(3), c = 12.329(3) Å and β = 128.73(2)° for K1.5Mo2P2O10 · H2O. These compounds isotypic with NH4Mo2P2O10 · H2O and RbMo2P2O10 · (1 ? x)H2O exhibit the leucophosphite structure. The possibility of cationic non stoichiometry in this structure is also shown by the synthesis of two isotypic compounds A1.5Mo2P2O10 · xH2O (A = Rb, Tl). In these monophosphates, one site Mo(1) is fully occupied by MoV, whereas the other octahedral site Mo(2) exhibits a variable valency MoIII? MoIV to MoV. The main difference between these different phosphates deals with the distribution of the A cations inside the tunnels, depending upon their size and their content.  相似文献   

14.
Double complexes [Pt(NH3)5Cl][Fe(C2O4)3] · 4H2O, [Pt(NH3)5Cl][Co(C2O4)3] · 2H2O, and [Pt(NH3)5Cl][Cr(C2O4)3] · 4H2O were synthesized and studied by single-crystal X-ray diffraction, X-ray phase analysis, differential thermal analysis, elemental analysis, and IR spectroscopy. The crystal structures of the compounds were examined from the viewpoint of the close packing of coordination polyhedra. The thermal properties of the synthesized complexes and K3[M(C2O4)3] salts (M = Fe, Co, Cr) were compared. A procedure for the synthesis of the FePt, CoPt, and CrPt intermetallic compounds through the thermolysis of the obtained complexes was developed. Original Russian Text ? K.V. Yusenko, D.B. Vasil’chenko, A.V. Zadesenets, I.A. Baidina, Yu.V. Shubin, S.V. Korenev, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 10, pp. 1589–1593.  相似文献   

15.
Crystal structures of K4P4O12 · 2H2O and of two polymorphs of Na2K2P4O12 · 2H2O are reported. K4P4O12 · 2H2O is triclinic P1 with a = 8.153(4), b = 8.222(4), c = 11.154(8) Å, α = 97.33(5), β = 95.46(5), γ = 88.92(5)°, and Z = 2. R = 0.021 for 2898 reflections. Na2K2P4O12 · 2H2O has two crystalline forms: a triclinic one (P1) with a = 11.366(8), b = 7.908(5), c = 7.929(5) Å, α = 90.07(5), β = 106.85(5), γ = 95.66(5)°, and Z = 2, and a tetragonal one (P41) with a = 7.928(5), c = 21.66(2), and Z = 4. The crystal structures of the first and second crystalline forms have been solved with final R values of 0.022 for 2505 reflections and 0.036 for 1347 reflections, respectively. Crystal data and chemical preparations are given for Na2(NH4)2P4O12 · 2H2O and Na2Rb2P4O12 · 2H2O, both isotypic with the triclinic form of Na2K2P4O12 · 2H2O. Unit-cell dimensions are, respectively, a = 11.547(8), b = 8.012(5), c = 8.044(5) Å, α = 89.76(5), β = 106.22(5), and γ = 94.78(5)°, for the ammonium salt, and a = 11.577(8), b = 8.006(5), c = 8.032(5) Å, α = 89.79(5), β = 106.58(5), and γ = 95.19(5)° for the rubidium salt. In addition the crystal structures of the two crystalline forms of Na4P4O12 · 4H2O were reexamined in order to localize the hydrogen atoms and refine their positions.  相似文献   

16.
The solubilities and solid phases in the Li2Mo3O10-CO(NH2)2-H2O system at 25°C are studied. A compound of composition Li2Mo3O10 · 6CO(NH2)2 · 4H2O and lithium trimolybdate decahydrate Li2Mo3O10 · 10H2O are found to exist. The Li2Mo3O10 · 6CO(NH2)2 · 4H2O ray crosses the solubility isotherm, which indicates the congruent solubility of the double compound in water. The density, refractive index, dynamic viscosity, surface tension, electrical conductivity, and pH of saturated solutions of the system are determined. The molar volume, equivalent electrical conductivity, reduced conductivity, and solution ionic strength isotherms are calculated. A strong correlation between all the property isotherms and the solubility is observed.  相似文献   

17.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

18.
The solubility of components in the system Mg(ClO3)2-2NH2C2H4OH · H3C6H5O7-H2O was studied from the complete freezing temperature ?59.4°C to 20.0°C. A polythermal solubility diagram was constructed, in which the crystallization fields were determined for ice, Mg(ClO3)2 · 16H2O, Mg(ClO3)2 · 12H2O, Mg(ClO3)2 · 6H2O, 2NH2C2H4OH · H3C6H5O7 · H2O, 2NH2C2H4OH · H3C6H5O7, and two new compounds, [(HOC(CH2COOH)2COO)2Mg · 2H2O] and [HOC(CH2COO)2MgCOOH · 2H2O], which were identified by chemical and physicochemical analysis methods.  相似文献   

19.
Syntheses, Crystal Structure, and Properties of the Cage‐like, Hexaacidic P12S12N8(NH)6 · 14 H2O and its Salts Li6[P12S12N14] · 26 H2O, (NH4)6[P12S12N14] · 10 H2O, and K6[P12S12N14] · 8 H2O The cage‐like acid P12S12N8(NH)6 · 14 H2O was obtained by the reaction of KSCN with P4S10 via the formation of K6[P12S12N14] · 8 H2O and subsequent ion exchange reactions in aqueous solution. Starting from the acid the salts Li6[P12S12N14] · 26 H2O and (NH4)6[P12S12N14] · 10 H2O were synthesized. According to X‐ray single‐crystal structure analyses the compounds are built up by isosteric P–N cages [P12S12N[3]8N[2]6]6–. Each of them is made up of twelve P3N3 rings, which exclusively exhibit the boat conformation. The cages have the idealized symmetry 2/m3; P12S12N8(NH)6 · 14 H2O: P1, a = 1119.11(7), b = 1123.61(7), c = 1125.80(6) pm, α = 80.186(4), β = 60.391(4), γ = 60.605(4)°, Z = 1; Li6[P12S12N14] · 26 H2O: Fm3, a = 1797.4(1) pm, Z = 4; (NH4)6[P12S12N14] · 10 H2O: P63, a = 1153.2(1), c = 2035.6(2) pm, Z = 2; K6[P12S12N14] · 8 H2O: R3c, a = 1142.37(5), c = 6009.6(3) pm, Z = 6. In the crystal the cages of the acid are crosslinked via hydrate molecules by hydrogen bonds. The cations in the salts show a high‐mobility and are located between the cages.  相似文献   

20.
Kinetics of thermal decomposition of single crystals and polycrystalline samples of Na5P3O10·6D2O and Na5P3O10·6H2O, interaction of fine-crystalline Na5P3O10·1.6H2O with humid gaseous ammonia were studied using TLC, XRDA, IRS, TG, DTA, DSK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号