首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of [Ru3(CO)10(μ-dppm)] 4 with quinolines afforded [Ru3 (μ-CO)(CO)732-P(C6H5)CH2P(C6H5)2)}{μ-η2-C9H5(R)N}] (8, R = 4-Me; 9, R = H) as the major products along with small amounts of known compound [Ru3(CO)933-P(C6H5)CH2P(C6H5)(C6H4)}] 5. The molecular structure of 8 has been determined by single crystal X-ray studies. The reaction of 5 with 4-methylquinoline in refluxing cyclohexane afforded 8 and two known dinuclear compounds, [Ru2(CO)6{μ-CH2P(C6H5)(C6H4)P(C6H5}] 10 and [Ru2(CO)6 {μ-(C6H4)P(C6H5)(CH2)P(C6H5}] 11, in 40, 12, and 10% yields, respectively. The compounds 10 and 11 are also formed from the thermolysis of 4 in addition to the major compound 5. The solid state structure of the previously reported [Ru3(CO)10(η-H){μ-η2-C9H6N}] 2a is also reported for comparison.  相似文献   

2.
Thermolysis of [Ru3(CO)12] in cyclohexene for 24 h affords the complexes [Ru(CO)34-C6H8)] (1), [Ru3H2(CO)92121-C6H8)] (2), [Ru4(CO)124-C6H8)] (3) [Ru4(CO)94-C6H8)(η6-C6H6)] (4a and 4b, two isomers) and [Ru5(CO)1242-C6H8)(η4-C6H8)] (5), where 1, 3, 4a and 4b have been previously characterised as products of the thermolysis of [Ru3(CO)12] with cyclohexa-1,3-diene. The molecular structures of the new clusters 2 and 5 were determined by single-crystal X-ray crystallography, showing that two conformational polymorphs of 5 exist in the solid state, differing in the orientation of the cyclohexa-1,3-diene ligand on a ruthenium vertex.  相似文献   

3.
The [2 + 2] photodimerization of the complex [(C5Me4CH2OMe)Ru(η6-C12H8)]+ under visible-light irradiation leads to a mixture of the head-to-head heptacyclene products [(μ-η6: η6-C24H16)Ru2(C5Me4CH2OMe)2]2+ (syn- and anti-) with the predominant formation of the syn-isomer; the structures of both isomers were established by X-ray diffraction analysis.  相似文献   

4.
5.
Marken  Frank  Marx  Hans -W.  Englert  Ulli 《Structural chemistry》1994,5(3):177-181
The substituted sandwich complex crystallizes in monoclinic space groupP21/m withZ=2. Twinning to the (001) direction with the special conditionc */4a * = cos * causes systematic superposition of the reciprocal lattices of both domains and results in an apparent unit cell with double volume and the reflection condition (2h)kl, l=2n. The structure solution was obtained with the subset of intensity data for the predominant individuum and converged atR = 0.040,R w =0.046 for 832 independent observations and 122 variables. The molecules show disorder with respect to the crystallographic mirror plane. The structure is closely related to that of decamethylruthenocene.  相似文献   

6.
《Solid State Sciences》2001,3(7):783-788
The synthesis and structural characterization of the complex [Ru(η6-C6H6)(η6-C6H4(CH3)COOCH3)] [BF4]2 (2) and of its precursor [Ru(η6-C6H4(CH3)COOCH3)Cl2]2 (1) are reported. Compound (2) has been characterized in two polymorphic modifications (2a and 2b) and the molecular organization in the solid state has been investigated. The complex [Ru(η5-C5H5)(η6-C6H5OH)][PF6] (3) has also been investigated; it has been shown to possess a disorder similar to that observed in the high temperature phase of related systems such as [Ru(η5-C5H5)(η6-C6H6)][PF6].  相似文献   

7.
The new bimetallic complex [Fe(η5-C5H4S)2Mo(NO){HB(3,5-Me2C3N2H)3)}] has been obtained from the reaction between [Fe(η5-C5H4SH)2] and [Mo(NO){HB(3,5-Me2C3N2H)3}I2]. Electrochemical studies reveal an anomalously cathodic oxidation potential for the metallocene redox centre. An X-ray diffraction study has revealed an FMo distance of 4.147(2) Å, with the ferrocenyl moiety oriented towards the nitrosyl ligand on the molybdenum atoms (Fe---O 3.976(6) Å), but provides no evidence for an interaction between the iron atom and the molybdenum-bound nitrosyl which might account for the electrochemical findings.  相似文献   

8.
Trans-PtH2(PCy3)2 (1) reacts with phenylisocyanate (2) and with diphenylketene (3) to yield the formamido complex (4) and the vinyloxo complex (5), respectively. The structure of 5 has been determined by X-ray diffraction.  相似文献   

9.
The synthesis, electronic structure, and reactivity of a uranium metallacyclopropene were comprehensively studied. Addition of diphenylacetylene (PhC≡CPh) to the uranium phosphinidene metallocene [η5-1,2,4-(Me3C)3C5H2]2U=P-2,4,6-tBu3C6H2 ( 1 ) yields the stable uranium metallacyclopropene, [η5-1,2,4-(Me3C)3C5H2]2U[η2-C2Ph2] ( 2 ). Based on density functional theory (DFT) results the 5f orbital contributions to the bonding within the metallacyclopropene U-(η2-C=C) moiety increases significantly compared to the related ThIV compound [η5-1,2,4-(Me3C)3C5H2]2Th[η2-C2Ph2], which also results in more covalent bonds between the [η5-1,2,4-(Me3C)3C5H2]2U2+ and [η2-C2Ph2]2− fragments. Although the thorium and uranium complexes are structurally closely related, different reaction patterns are therefore observed. For example, 2 reacts as a masked synthon for the low-valent uranium(II) metallocene [η5-1,2,4-(Me3C)3C5H2]2UII when reacted with Ph2E2 (E=S, Se), alkynes and a variety of hetero-unsaturated molecules such as imines, ketazine, bipy, nitriles, organic azides, and azo derivatives. In contrast, five-membered metallaheterocycles are accessible when 2 is treated with isothiocyanate, aldehydes, and ketones.  相似文献   

10.
Diyne FcCmCC.CFc (Fc is ferrocenyl) reacts with Ru3(CO)12 in boiling hexane to yield binuclear complexes Ru2 and Ru2(CO)6(C4Fc2(C=CFc)2C=O) containing ruthenacyclopentadiene and diruthenacycloheptadienone rings, respectively. The isomerism of the complexes is due to the different ways of coupling of the alkyne fragments of the diyne, namely, head-to-head, head-to-tail or tail-to-tail. The reaction of enyne PhC=CCH=CHPh with Ru3(CO)12 under similar conditions gives isomeric binuclear complexes Ru2(CO)6(C4Ph2(CH=CHPh)2) and trinuclear clusters Ru3(CO)6(w-CO)2(C4Ph2(CH=CHPh)2) and Ru3(CO)8(3-,1-1-4-2 C4Ph2(CH=CHPh)2). The structure of the latter was determined by X-ray diffraction analysis. The Ru3 triangle coordinates eight terminal CO groups and the organic ligand resulting from the head-to-head dimerization of enyne molecules; the ruthenacyclopentadiene moiety is 4-coordinated to the Ru(CO)2 group, and the third ruthenium atom is 2-bound to one of the PhCH=CH groups.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1261–1267, May, 1996.  相似文献   

11.
Reaction of the cluster Os3(μ-CO)(CO)93112-Me3SiC2Me) with HC≡CCOOMe in benzene at 70 °C results in Os3(CO)931122-C(SiMe3)C(Me)C(COOMe)CH× (5), Os3(CO)931122-C(SiMe3)C(Me)C(H)C(COOMe)CH× (6), Os3(CO)9{μ-η114-C(SiMe3)C(Me)C(H)C(COOMe)CH× (7), and Os3(CO)δ31141-C(SiMe3)C(Me)C(H)C(COOMe)× complexes (8), containing an osmacyclopentadiene moiety. Complexes5–8 were characterized by1H NMR and IR spectroscopy. The structure of clusters5 and8 was confirmed by X-ray analysis. Complex7 is formed from cluster5 as a result of a new intramolecular rearrangement and complex8 is obtained by decarbonylation of compound6. Complex8 adds PPh3 to give Os3(CO)δ(PPh3){μ-η114-C(SiMe3)C(Me)C(H)C(COOMe)×.  相似文献   

12.
The electron distributions and bonding in Ru3(CO)9( 3- 2, 2, 2-C6H6) and Ru3(CO)9( 3- 2, 2, 2-C60) are examined via electronic structure calculations in order to compare the nature of ligation of benzene and buckminsterfullerene to the common Ru3(CO)9 inorganic cluster. A fragment orbital approach, which is aided by the relatively high symmetry that these molecules possess, reveals important features of the electronic structures of these two systems. Reported crystal structures show that both benzene and C60 are geometrically distorted when bound to the metal cluster fragment, and our ab initio calculations indicate that the energies of these distortions are similar. The experimental Ru–Cfullerene bond lengths are shorter than the corresponding Ru–Cbenzene distances and the Ru–Ru bond lengths are longer in the fullerene-bound cluster than for the benzene-ligated cluster. Also, the carbonyl stretching frequencies are slightly higher for Ru3(CO)9( 3- 2, 2, 2-C60) than for Ru3(CO)9( 3- 2, 2, 2-C6H6). As a whole, these observations suggest that electron density is being pulled away from the metal centers and CO ligands to form stronger Ru–Cfullerene than Ru–Cbenzene bonds. Fenske-Hall molecular orbital calculations show that an important interaction is donation of electron density in the metal–metal bonds to empty orbitals of C60 and C6H6. Bonds to the metal cluster that result from this interaction are the second highest occupied orbitals of both systems. A larger amount of density is donated to C60 than to C6H6, thus accounting for the longer metal–metal bonds in the fullerene-bound cluster. The principal metal–arene bonding modes are the same in both systems, but the more band-like electronic structure of the fullerene (i.e., the greater number density of donor and acceptor orbitals in a given energy region) as compared to C6H6 permits a greater degree of electron flow and stronger bonding between the Ru3(CO)9 and C60 fragments. Of significance to the reduction chemistry of M3(CO)9( 3- 2, 2, 2-C60) molecules, the HOMO is largely localized on the metal–carbonyl fragment and the LUMO is largely localized on the C60 portion of the molecule. The localized C60 character of the LUMO is consistent with the similarity of the first two reductions of this class of molecules to the first two reductions of free C60. The set of orbitals above the LUMO shows partial delocalization (in an antibonding sense) to the metal fragment, thus accounting for the relative ease of the third reduction of this class of molecules compared to the third reduction of free C60.  相似文献   

13.
Tetrakis(di-tert-butylmethylsilyl)tetragermacyclobutadiene]ruthenium tricarbonyl [η4-(But 2MeSi)4Ge4]Ru(CO)3 is synthesized. This analogue of well-known cyclobutadiene transition metal complexes bears a tetragermacyclobutadiene derivative as ligand. The structure and spectroscopic parameters of the complex are compared with those of its iron-containing analogue [η4-(But 2MeSi)4Ge4]Fe(CO)3. Based on experimental data and results of quantum chemical calculations, it is shown that the π-donating ability of ligands increases upon replacement of carbon atoms in the cyclobutadiene moiety by silicon or germanium atoms, tetrasilacyclobutadiene and tetragermacyclobutadiene being comparable in π-donating activity.  相似文献   

14.
The reaction of Sn[CH(SiMe3)2]2 and ethyne at ambient temperature affords a mixture of products, from which the title compound has been separated and identified by IR, 1H, and 13C NMR spectroscopy.  相似文献   

15.
Zhiliang Zhang  Tianduo Li 《合成通讯》2013,43(22):3417-3423
In the study, epoxidation of dodecanol monomaleate, hexadecanol monomaleate, and octadecanol monomaleate were carried out using [π-C5H5N(CH2)15CH3]3PO4(WO3)4 as phase-transfer catalyst with 30% hydrogen peroxide as oxidant. The experimental results showed that [π-C5H5N(CH2)15CH3]3PO4(WO3)4 had excellent catalytic effect on translating C=C double-bond into an epoxy group and had a good yield rate. The synthesized epoxides of decanol monomaleate, hexadecanol monomaleate, and octadecanol monomaleate have enormous potential application in organic synthesis, and they could be readily transformed into various synthetically useful intermediates or final products in many fields of chemistry.   相似文献   

16.
The coordination compounds [Cd(CH3COO-κO 1,O 2)2(phenanthroline-kN 1 N 2)(H2O)] · H2O (1) and [Cd{μ-(CH3CH2COO-κO 1,O 2)}2(phenanthroline-κN 1,N 2)]2 · 2CH3CH2COOH (2) were synthesized and characterized by elemental and thermal analysis and IR spectroscopy. Crystal and molecular structures of both compounds were determined. The complexes are air stable and fairly soluble in water. In both compounds the cadmium is seven-coordinate and contains chelating phenanthroline and two chelating carboxylate groups in the inner coordination sphere. The seventh coordinating oxygen belongs to water in 1 and to bridging carboxylate in 2. All carboxylate groups are bonded unsymmetrically to the central atom. The coordination polyhedra can be described as distorted pentagonal bipyramid (compound 1) and distorted capped tetragonal bipyramid (compound 2). In the structure of 1 intermolecular O(water)–H ··· O (water/carboxylate) hydrogen bonds create a two-dimensional net along the crystallographic a0c plane. Each molecule of 2 is connected to two propionic acid molecules via hydrogen bonds. In both compounds exist π-stacking interactions.  相似文献   

17.
18.
The synthesis of the novel “slipped” sandwich compound [Ni(η5-P3C2R2)(η3-P2C3R3)] (R = But) is described. The mode of attachment of the P3C2R2 and P2C3R3 rings has been determined by NMR spectroscopy and a single crystal X-ray diffraction study.  相似文献   

19.
《Polyhedron》1987,6(12):2067-2071
Reactions between diphenyl(vinyl)phosphine and the compounds [FeW(μ-CC6H4Me-4)(CO)55-C5Me5)] and [FeMo(μ-CC6H4Me-4)(CO)65-C5H5)] result in a coupling of the vinyl and p-tolylmethylidyne groups at the dimetal centres to produce the PPh2 · CH · CH2 · C(C6H4Me-4) fragment, which bridges the metal-metal bonds. This was confirmed by an X-ray diffraction study on [FeW{μ-PPh2 · CH · CH2 · C(C6H4Me-4)}(CO)55-C5Me5)].  相似文献   

20.
The oxirane-ring opening of butyl glycidyl ether with cyclopentadienylsodium or indenylsodium afforded cyclopentadienyl- and indenyl-substituted alcohols RHCH2CH(OH)CH2OBun (R = C5H4 (1) or 3-C9H6 (2), respectively), which were used as tridentate ligands. The reactions of these compounds with Ln[N(SiMe3)2]3 produced the lanthanide complexes {[(5-R)CH2CH(2:1-O)CH2OBun]LnN(SiMe3)2}2 (R = C5H4, Ln = La (3), Pr (4), Er (5), Lu (6); or R = 1-C9H6, Ln = La (7)). The coordination spheres of the metal atoms in these complexes involve simultaneously the 5-cyclopentadienyl (indenyl), bridging alkoxide, and terminal amide ligands. The complexes were characterized by microanalysis, IR and NMR spectroscopy, and magnetochemistry. The crystal and molecular structure of complex 3 was established by single-crystal X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号