首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of epoxy resin which contained cyclic phosphine oxide group in the main chain was synthesized. The structure of the new type of epoxy resin was confirmed by elemental analyses (EA), infrared spectroscopy (IR), and 1H-NMR and 13C-NMR spectroscopies. In addition, compositions of the new synthesized cyclic phosphine oxide epoxy resin (EPCAO) with three curing agents, e.g., bis(3-aminophenyl)methylphosphine oxide (BAMP), 4,4′-diamino-diphenylmethane (DDM), and 4,4′-diaminodiphenylsulfone (DDS), were used for making a comparison of its curing reactivity, heat, and flame retardancy with that of Epon828 and DEN438. The reactivities were measured by differential scanning calorimetry (DSC). Through the evaluation of thermal gravimetric analysis (TGA), those polymers which were obtained through the curing reactions between the new epoxy resin and three curing agents (BAMP, DDM, DDS) also demonstrated excellent thermal properties as well as a high char yield. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

3.
采用醛胺缩合反应,以4-(5,5-二甲基-1,3-二氧杂环己内磷酰基)苯甲醛(PCHO)分别与对苯二胺、乙二胺反应合成两种磷酸酯-亚胺双官能化合物阻燃剂(FR:N1,N4-二[4-(5,5-二甲基-1,3-二氧杂环己内磷酰氧基)苯基亚甲基]-1,4-苯二胺(PNB)和N1,N2-二[4-(5,5-二甲基-1,3-二氧杂环己内磷酰氧基)苯基亚甲基]-1,2-乙二胺(PNE)),研究了FR对4,4'-二氨基二苯砜(DDS)固化双酚A二缩水甘油醚型环氧树脂(DGEBA)体系的阻燃作用及阻燃机理。 研究发现FR的引入显著提高了DGEBA/DDS在700 ℃时的残炭率(Rc),同时提升了材料的阻燃性能,其中以乙二胺合成的PNE阻燃性能显著优于以苯二胺合成的PNB。 当磷添加质量分数为1.5%时,PNE-1.5/DGEBA/DDS在N2气下的Rc为35.1%,在空气下的Rc为14.4%,极限氧指数(LOI)为33.2%,并可达阻燃等级UL-94最高阻燃级别V-0级。 同时,PNE-1.5/DGEBA/DDS相较于DGEBA/DDS保持了弯曲强度和76%以上的冲击强度,机械性能显著优于PNB-1.5/DGEBA/DDS。 通过阻燃机理分析FR在DGEBA/DDS体系中具有凝聚相、气相及磷-氮协效共同作用的阻燃特点。 磷酸酯-亚胺双官能团化合物FR对环氧树脂体系具有良好的阻燃作用,其中PNE阻燃效率高、机械性能负面影响小,具有潜在应用价值。  相似文献   

4.
《中国化学快报》2022,33(11):4912-4917
Recent advances in epoxy resins have been forward to achieving high mechanical performance, thermal stability, and flame retardancy. However, seeking sustainable bio-based epoxy precursors and avoiding introduction of additional flame-retardant agents are still of increasing demand. Here we report the synthesis of p-hydroxycinnamic acid-derived epoxy monomer (HCA-EP) via a simple one-step reaction, and the HCA-EP can be cured with 4,4′-diaminodiphenylmethane (DDM) to prepare epoxy resins. Compared with the typical petroleum-based epoxy resin, bisphenol A epoxy resin, the HCA-EP-DDM shows a relatively high glass transition temperature (192.9 °C) and impressive mechanical properties (tensile strength of 98.3 MPa and flexural strength of 158.9 MPa). Furthermore, the HCA-EP-DDM passes the V-1 flammability rating in UL-94 test and presents the limiting oxygen index of 32.6%. Notably, its char yield is as high as 31.6% under N2, and the peak heat rate release is 60% lower than that of bisphenol A epoxy resin. Such findings provide a simple way of using p-hydroxycinnamic acid instead of bisphenol A to construct high-performance bio-based thermosets.  相似文献   

5.
Novel phosphorus-containing epoxy resins (1–3% phosphorus content) were synthesized by the reaction of 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and the diglycidyl ether of bisphenol A and then cured with 4,4′-diaminodiphenyl sulfone or phenol novolac. Differential scanning calorimetry, high performance liquid chromatography, and epoxide equivalent weight titration were used to trace the reaction between the DOPO and the epoxy. The thermal stability and flame retardancy were checked by thermal gravimetric analysis, the limiting oxygen index, and the UL-94 vertical test. The glass transitions were measured by dynamic mechanical analysis. The relation between these properties (thermal stability, flame retardancy, and glass transition) and the DOPO contents (phosphorus content) were discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3903–3909, 1999  相似文献   

6.
The curing behavior of diglycidyl ether of bisphenol-A(DGEBA) with different phosphorus containing diamidediimide-tetraamines(DADITAs) was studied by DSC. Eight DADITAs of varying structures were synthesized by reacting 1 mole of pyromellitic anhydride(PMDA)/3,3′-benzophenone tetracarboxylic dianhydride(BTDA)/1,4,5,8-naphthalene tetracarboxylic dianhydride(NTDA)/4,4′-oxydiphthalic anhydride(ODPA) with 2 mole of L-tryptophan(T) in a mixture of acetic acid and pyridine(3:2 V/V) followed by activaton with thionyl chloride and then condensation with excess of phosphorus containing triamines tris(3-aminophenyl) phosphine(TAP) and tris(3-aminophenyl) phosphine oxide(TAPO). DADITAs obtained by reacting PMDA/BTDA/NTDA/ODPA with L-tryptophan followed by condensation with TAP/TAPO were designated as PTAP, PTAPO, BTAP, BTAPO, NTAP, NTAPO, OTAP and OTAPO respectively. The structural characterization of synthesized DADITAs was done by FTIR,1H-NMR,13C-NMR,31P-NMR spectroscopic techniques and elemental analysis. Thermal stability of the isothermally cured epoxy was investigated using dynamic thermogravimetry analysis. The glass transition temperature(Tg) was highest in DGEBA cured using PTAP. All epoxy thermosets exhibited excellent flame retardancy, moderate changes in Tg and thermal stability. Due to presence of phosphorus in curing agents, all epoxy resin systems met the UL-94 V-0 classification and the limiting oxygen index(LOI) reached up to 38.5, probably because of the nitrogen-phosphorus synergistic effect.  相似文献   

7.
A novel flame retardant curing agent for epoxy resin (EP), i.e., a DOPO (9,10-dihydro-9-oxa-10-phosphaphenan-threne-10-oxide)-containing 4,4'-bisphenol novolac (BIP-DOPO) was synthesized and characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR spectroscopy, and gel permeation chromatography. The epoxy resin cured by BIP-DOPO itself or its mixture with a commonly used bisphenol A-formaldehyde novolac resin (NPEH720) was prepared. The flame retardancy of the cured EP thermosets were studied by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT), and the thermal properties by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that the cured epoxy resin EPNP/BI/3/1, which contains 2.2% phosphorus, possesses a value of 26.2% and achieves the UL 94 V-0 rating. The data from cone calorimeter test demonstrated that the peak release rate, average heat release rate, total heat release decline sharply for the flame retarded epoxy resins, compared with those of pure ones. DSC results show that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA indicates that the incorporation of BIP-DOPO promotes the decomposition of epoxy resin matrix ahead of time and leads to higher char yield. The surface morphological structures of the char residues reveal that the introduction of BIP-DOPO benefits to the formation of a continuous and solid char layer on the epoxy resin material surface during combustion.  相似文献   

8.
A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.  相似文献   

9.
A reactive phosphorus-containing compound, bis-phenoxy (3-hydroxy) phenyl phosphine oxide (BPHPPO) was first successfully synthesized to produce the phosphorus-containing flame retardant epoxy resin (BPHPPO-EP). The chemical structures were characterized from FTIR, MS, NMR spectra and elemental analyses. Thermal degradation behaviors and flame retardant properties of the cured epoxy resins were investigated from the thermogravimetric analysis (TGA) and the limiting oxygen index (LOI) test using 4,4′-diaminodiphenylsulfone (DDS) as curing agent. The high char yields and the high limiting oxygen index values were found to certify the great flame retardancy of this phosphorus-containing epoxy resin.  相似文献   

10.
Hexaglycidyl cyclotriphosphazene (HGCP) was synthesized, and characterized by FTIR, 31P, 1H, and 13C-NMR. This compound was used as a reactive flame retardant to blend with commercial epoxy resin DGEBA (Diglycidyl ether of bisphenol A). Its effect on the DGEBA decomposition pathways was characterized by studying both gas and solid phases produced during thermogravimetric analysis (TGA). The gases evolved during TGA in air were studied by means of thermogravimetry coupled with Fourier transform infrared spectroscopy (TG–FTIR), while the solid residues were analysed by FTIR and scanning electron microscopy (SEM). The results showed that HGCP presents a good dispersion in DGEBA, and the blend thermoset with 4,4′-methylene-dianiline (MDA) curing agent leads to a significant improvement of the thermal stability at elevated temperature with higher char yields compared with pure DGEBA thermoset with the same curing agent. Improvement has also been observed in the fire behaviour of blend sample.  相似文献   

11.
Epoxy resins frequently have to meet a flame retardancy grade which can be accomplished by incorporating brominated reactive compounds, like tetrabromobisphenol A (TBBA) cured by a number of hardeners. A few brominated epoxy resins (BERs) have been prepared by curing a mixture of diglycidyl ethers of bisphenol A (DGEBA)/diglycidyl ethers of tertabromobisphenol A (DGETBBA) and different hardeners: dicyandiamide (DICY), 4,4′-diaminodiphenyl sulphone (DDS) and polyethylene polyamine (PEPA). The use of different hardeners strongly affects the thermal degradation behaviour of the BER.The main volatile products of pyrolysis, characterized by Pyrolysis-Gas Chromatography-Mass Spectroscopy (PY-GC-MS) at 423 °C were phenol, isopropyl- and isopropenylphenol, mono- and di-brominated phenols, bisphenol A, mono-, di-, tri- and tetra-brominated bisphenol A. No nitrogen containing volatile products or HBr were evolved whereas SO2 is formed from BER cured with DDS (BER-DDS) and bromoethylene from BER cured with PEPA (BER-PEPA). Differences of 30-60 °C in thermal stability of epoxy network have been found, depending on the hardener. The experimental evidence suggests a cooperative action of bromine and nitrogen in chain scission of epoxy resins. In particular the ability of the hardener in fixing HBr, evolved from TBBA units, seems to depend on the basicity of the N atom of the hardener: the lower the basicity, the lower the scavenging effectiveness and consequently the higher the thermal stability.  相似文献   

12.
2-(6-oxido-6H-dibenz(c,e)(1,2)oxaphosphorin-6-yl)-1,4-naphthalenediol (DOPONQ) was prepared by the addition reaction of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) with 1,4-naphthoquinone. The phosphorus-containing diol (DOPONQ) was used as a reactive flame retardant by an advancement reaction with the diglycidyl ether of bisphenol-A epoxy (DGEBA) resin at various stoichiometric ratios. DOPONQ-containing advanced epoxy was separately cured with various dicyanate esters to form flame-retardant epoxy/cyanate ester systems. The effect of the phosphorus content and dicyanate ester structure on the curing characteristic, glass transition temperature, dimensional stability, thermal stability, flame retardancy, and dielectric property was studied and compared with that of the control advanced bisphenol-A epoxy system. The DOPONQ-containing epoxy/cyanate ester systems exhibited higher glass transition temperatures as well as better thermal dimensional and thermal degradation stabilities. The flame retardancy of the phosphorus-containing epoxy/dicyanate ester system increased with the phosphorus content, and a UL-94 V-0 rating could be achieved with a phosphorus content as low as 2.1%.  相似文献   

13.
A phosphorus-nitrogen reactive flame retardant curing agent poly-(isophorondiamine spirocyclic pentaerythritol bisphosphonate) (PIPSPB) was synthesized. The chemical structure of the obtained compound was identified by FTIR, 1HNMR, and mass spectroscopies. Different proportions of DDS and PIPSPB were compounded as the curing agents to prepare a series of flame retardant epoxy resins with different phosphorus contents. The curing behavior of E-44/PIPSPB?+?DDS system was studied by DSC. A series of tests were conducted to characterize E-44/PIPSPB?+?DDS thermosetting system’s performance. The result demonstrates that the residual carbon content of EP/PIPSPB?+?DDS system is obviously higher than that of EP/DDS system after 500?°C with the increase of phosphorus content in the system, and the heat release rate of the system during combustion is significantly reduced. The generated phosphorus-containing carbon layer is obviously foamed, which shows that the flame retardancy of the system is the result of the combined action of condensed phase and gas phase. When the phosphorus content is 1.77wt%, EP-3 successfully passed UL94 V-0 flammability rating, the LOI value was as high as 29%, the impact strength and tensile strength of it were 6.08KJ/m2 and 49.10MPa respectively, the adhesive strength could reach 13.89?MPa, the system presents a good overall performance.  相似文献   

14.
Curing kinetics of diglycidyl ether of bisphenol-A (DGEBA) in the presence of varying molar ratios of derivatives of stannanes to 4,4'-diaminodiphenylsulfone (DDS) was investigated by the dynamic differential scanning calorimetry. The derivatives were synthesized by reacting 1 mole of biguanide (B) with 1 mole of phenylethyltindihydride (PETH) or phenylmethyltindihydride (PMTH) or phenylbutyltindihydride (PBTH) and designated as BPETH or BPMTH or BPBTH respectively. These derivatives were characterized by elemental analysis and spectroscopic techniques such as IR, 1H NMR, 13C NMR and 119Sn NMR. The mixtures of these derivatives to DDS at ratios of 0∶1, 0.25∶0.75, 0.5∶0.5, 0.75∶0.25 and 1∶0 were used to investigate the curing behaviour of DGEBA. The multiple heating rate method (5, 10, and 15 and 20 ℃•min-1) was used to study the curing kinetics of epoxy resins. The thermal stability of the isothermally cured resins was also evaluated using dynamic thermogravimetry in a nitrogen atmosphere.  相似文献   

15.
In this report, a novel phosphorus/silicon‐containing reactive flame retardant, hexa(3‐triglycidyloxysilylpropyl)triphosphazene (HGPP), was synthesized and characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectra (1H, 31P, and 29Si), respectively. To prepare cured epoxy, HGPP had been co‐cured with diglycidyl ether of bisphenol‐A (DGEBA) via 4,4‐diaminodiphenylsulfone as a curing agent. The mechanical, thermal, and flame retardant properties of the cured epoxy were evaluated by dynamic mechanical analysis, thermogravimetric analysis, and limiting oxygen index (LOI). According to these results, it could be found that incorporation of HGPP in the cured epoxy system showed good thermal stability, high LOI values, and high char yield at high temperature. As moderate loading of HGPP in the epoxy system, its storage modulus and glass transition temperature were higher than those of neat DGEBA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.

A novel phosphorous containing flame retardant epoxy resin is synthesized by modifying the epoxy resin initially with phosphoric acid and further with aluminum hydroxide (ATH) to enhance the fire retardancy of the modified epoxy resin. The several phosphorous modified epoxy resin to ATH mass ratios were used to study the effect of ATH addition on epoxy. Thermal and mechanical properties. The structure of the modified flame retardant epoxy resin was characterized using Fourier-transform infrared spectroscopy (FTIR) while thermal degradation behavior and flame retardant properties were examined using thermo-gravimetric analysis (TGA) and UL-94 testing. Furthermore, ultimate tensile strength and young modulus were analyzed to study the effect of ATH addition on mechanical properties. The findings indicated that fire retardancy of ATH reinforced modified ep oxy resin is higher than virgin and phosphorous modified epoxy resin and depicted eminent flame retardant properties with suitable mechanical properties.

  相似文献   

17.
Epoxy resins modified by an organosoluble phosphorus‐containing bismaleimide (3,3′‐bis(maleimidophenyl) ­phenylphosphine oxide; BMPPPO) were prepared by simultaneously curing epoxy/diaminodiphenylmethane (DDM), and BMPPPO. The resulted epoxy resins were found to exhibit glass transition temperatures as high as 212 °C, thermal stability at temperatures over 350 °C, and excellent flame retardancy with Limited oxygen index (LOI) values around 40. Incorporation of BMPPPO into epoxy resins via the thermosetting blend was demonstrated to be an effective way to enhance the thermal properties and flame retardancy simultaneously. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

19.
A curable low-molecular-weight poly(phenylene oxide) (PPO) was prepared by the redistribution of regular PPO with bisphenol-A (BPA) followed by etherification of the redistributed-PPO (BPA-PPO) with N,N-diallyl-2-chloroacetamide. The redistributed-PPO with allyl group (AL-PPO) was characterized by proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The AL-PPO oligomers with reactive double bounds were cured with triallylisocyanurate (TAIC) and/or phosphorus-containing allyl-functionalized monomer (allyl-DOPO). The glass transition temperatures were measured by dynamic mechanical analysis (DMA). Electrical properties of cured resins were studied using dielectric analyzer (DEA). The flame retardancy was determined by a UL-94 vertical test. The effects of curing accelerator, amount of TAIC and allyl-DOPO incorporated into the network on the glass transition temperatures, dielectric properties, and flame retardancy of the resulting systems were investigated. The results indicated that AL-PPO cured with TAIC exhibited high glass-transition temperature (162–198°C), low dielectric constants (2.36–2.57 at 1 GHz) and dissipation factors (0.0039–0.0043 at 1 GHz). The AL-PPO/TAIC copolymerized with allyl-DOPO could achieve a flame retardancy rating of UL-94 V-0 at about 1.35% phosphorus content. The AL-PPO/TAIC resins have potential applications in the fabrication of printed circuit board.  相似文献   

20.
Diethylphosphite (DEP) and its derivative exhibited thermally latent properties for epoxy curing reactions through the formation of phosphonic acid as an active species from a reaction of ethanol elimination, which was observed with 1H NMR and pyrolysis gas chromatography/mass spectrometry measurements. The thermally latent properties and curing reaction kinetics of the curing reaction of DEPs with diglycidyl ether of bisphenol A were studied with differential scanning calorimetry. The cured epoxy resins possessed a phosphorous element coming from the DEP derivatives, exhibiting improved flame retardancy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 432–440, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号