首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

3.
Infrared and Raman Spectroscopic Investigations on the Organosubstituted Silicon Hydrides (XCH2)(CH3)2SiH (X = Cl, Br, J), X(YO)2SiH (X = CH2, C2H5/Y = CH3, C2H5 … tert.-C4H9), (C6H5)2SiH2 and C6H5SiH3 Typical band splittings, specially for the SiH stretching vibration, are shown in the infrared and Raman spectra of the silicon hydrides (XCH2)(CH3)2SiH (X = Cl, Br, J), and X(YO)2SiH (X = CH3, C2H5/Y = CH3, C2H5 … tert.-C4H9). The cause of this behavior is in all probability the existence of rotational isomers. Raman polarization measurements at organosubstituted silicon di- and trihydrides demonstrate the accidental degeneracy of the SiH valence vibrations.  相似文献   

4.
The reaction of O,O′-diisopropylphosphoric acid isothiocyanate (iPrO)2P(O)NCS with 2-methylaniline 2-MeC6H4NH2, 2,6-dimethylaniline 2,6-Me2C6H3NH2, or 2,4,6-trimethylaniline 2,4,6-Me3C6H2NH2 leads to the N-phosphorylated thioureas RNHC(S)NHP(O)(OiPr)2 (R = 2-MeC6H4?, HLI ; 2,6-Me2C6H3?, HLII ; 2,4,6-Me3C6H2?, HLIII ). Reaction of the potassium salts of HLI III with Ni(II) in aqueous EtOH leads to [Ni(LI–III-N,S)2] ([NiLI–III 2 ]) chelate complexes. The compounds obtained were investigated by 1H, 31P{1H} NMR spectroscopy and microanalysis. The molecular structure of the thiourea HLIII was elucidated by single crystal X-ray diffraction analysis. Single crystal X-ray diffraction studies showed that HLIII forms both intra- and intermolecular hydrogen bonds, which in turn leads to the formation of polymeric chains. One of the intermolecular hydrogen bonds is of the type N?H…S. Moreover, the formation of intermolecular C?H…η6-phenyl interactions was established.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

5.
Abstract

The reaction of Ar[sbnd]P[dbnd]C[dbnd]P[sbnd]Ar (Ar=2.4.6-tBu3C6H2) with electrophiles (H+, S8) proceeds at the phosphorus atom with subsequent cyclisation of an o-tbutyl group.  相似文献   

6.
N‐sulfinylacylamides R‐C(=O)‐N=S=O react with (CF3)2BNMe2 ( 1 ) to form, by [2+4] cycloaddition, six‐membered rings cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(R)‐O for R = Me ( 2 ), t‐Bu ( 3 ), C6H5 ( 4 ), and p‐CH3C6H4 ( 5 ) while N‐sulfinylcarbamic acid esters R‐O‐C(=O)‐N=S=O react with 1 to yield mixtures of six‐membered (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(OR)‐O) and four‐membered rings (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N(C=O)OR) for R = Me ( 6 and 9 ), Et ( 7 and 10 ), and C6H5 ( 8 and 11 ). The structure of 5 has been determined by X‐ray diffraction.  相似文献   

7.
Inhaltsübersicht. Triorganoantimon- und Triorganobismutdicarboxylate R3M[O2C(CH2)n-2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) wurden durch Reaktionen von R3Sb(OH)2 (R = CH3, C6H11, 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) bzw. R3BiCO3 mit den entsprechenden fünfgliedrigen heterocyclischen Carbonsäuren 2-C4H3X(CH2)nCOOH dargestellt. Auf der Basis schwingungsspektroskopischer Daten wird für alle Verbindungen eine trigonal bipyramidale Umgebung vom M (zwei O-Atome von einzähnigen Carboxylatliganden in den apikalen, drei C-Atome von R in den äquatorialen Positionen) vorgeschlagen, ferner eine schwache Wechselwirkung zwischen O(=C) jeder Carboxylatgruppe und M. Die Kristallstrukturbestimmung von (C6H5)3Sb(O2C–2-C4H3S)3 stützt diesen Vorschlag. Die Verbindung kristallisiert triklin [Raumgruppe P$1; a = 891,8(14), b = 1058,2(12), c = 1435,6(9) pm, α = 68,53(8), β = 85,47(9), γ = 85,99(11)°; Z = 2; d(ber.) = 1,607 Mg m–3; V(Zelle) = 1255,6 Å3; Strukturbestimmung anhand von 3947 unabhängigen Reflexen (Fo > 3σ(F2o)), R(ungewichtet) = 0,037]. Sb bindet drei C6H5-Gruppen in der äquatorialen Ebene [mittlerer Abstand Sb–C: 211,1(5)pm] und zwei einzähnige Carboxylatliganden in den apikalen Positionen einer verzerrten trigonalen Bipyramide [mittlerer Abstand Sb–O: 212,0(4) pm]. Aus den relativ kurzen Sb – O(=C)-Abständen [274,4(4) und 294,9(4) pm] und aus der Aufweitung des dem O(=C)-Atom nächsten äquatorialen C–Sb–C-Winkels auf 145,9(2)° [andere C-Sb-C-Winkel: 104,4(2), 109,5(2)°] wird auf schwache Sb–O(=C)-Koordination geschlossen. Schließlich wird eine Korrelation zwischen dem (+, –)I-Effekt des Organoliganden R an M (M = Sb, Bi) und der Stärke der M–O(=C)-Koordination in den Dicarboxylaten R3M[O2C(CH2)n–2-C4H3X]2 vorgeschlagen. Triorganoanümony and Triorganobismuth Derivatives of Carbonic Acids of Five-membered Heterocycles. Crystal and Molecular Structure of (C6H5)3Sb(O2C–2-C4H3S)2 Triorganoantimony- and triorganobismuth dicarboxylates R3M[O2C(CH2)n–2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) have been prepared by reaction of R3Sb(OH)2 (R = CH3, C6H11; 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) or R3BiCO3 with the appropriate five-membered heterocyclic carboxylic acid. From vibrational data for all compounds a trigonal bipyramidal environment around M (two O atoms of unidendate carboxylate ligands in apical, three C atoms (of R) in equatorial positions) is proposed and also an additional weak interaction of O(=C) of each carboxylate group and M. The crystal structure determination of Ph3Sb(O2C–2-C4H3S)2 gives additional prove to this proposal. It crystallizes triclinic [space group P$1; a = 891.8(14), b = 1058.2(12), c = 1435.6(9) pm, α = 68.53(8), β = 85.47(9), γ = 85.99(11)°; Z = 2; d(calc.) = 1.607 Mg m–3; Vcell = 1255.6 Å3; structure determination from 3 947 independent reflexions (Fo > 3σ(F2o)), R(unweighted) = 0.037]. Sb is bonding to three C6H5 groups in the equatorial plane [mean distance Sb–C: 211.1(5) pm] and two unidentate carboxylate ligands in the apical positions of a distorted trigonal bipyramid [mean distance Sb–O: 212.0(4) pm]. From the relatively short Sb–O(=C) distances [274.4(4) and 294.9(4) pm] and from the enlarged value of the equatorial C–Sb–C angle next to the O(=C) atom [145.9(2)°; other C–Sb–C angles: 104.4(2), 109.5(2)°] additional weak Sb–O(=C) coordination is inferred. Finally a correlation between the (+, –) I-effect of the organic ligands It at M and the strength of the M–O = C interaction is suggested.  相似文献   

8.
《中国化学会会志》2017,64(11):1340-1346
In this investigation, we describe substituent effect on the dipole moment, ionization potential, electron affinity, structure, frontier orbitals energy, in the trans‐Cl(OC)(H3P)3W(≡C‐para‐C6H4X) (X = H, F, SiH3, CN, NO2, SiMe3, CMe3, NH2, NMe2) complexes using MPW1PW91 quantum chemical calculations. The nature of chemical bond between the [Cl(OC)(H3P)3W] and [C‐para‐C6H4X]+ fragments was illustrated with energy decomposition analysis (EDA). Percentage composition in terms of the defined groups of frontier orbitals for these complexes was inspected to investigate the character in metal–ligand bonds. Quantum theory of atoms in molecules (QTAIM) was used for illustration of metal–ligand bonds in these complexes.  相似文献   

9.
Reactions of title ylide, {(C6H5)3PCHCOC6H4C6H5)} (BPPPY), with mercury(II) halides in equimolar ratios in methanol yielded dinuclear complexes [(BPPPY)HgCl2]2 (1), [(BPPPY)HgBr2]2 (2), and [(BPPPY)HgI2]2 (3). Reactions of BPPPY with CdCl2 in equimolar ratios gave [(BPPPY)CdCl2]2 (4). Reaction of PdCl2 with BPPPY (1/2) in acetonitrile at room temperature gave cis/trans [PdCl2{CH(PPh3)COC6H4C6H5}2] (5). The same reaction at reflux gave the orthopalladated complex [Pd{CH{P(2-C6H4)Ph}(COC6H4C6H5)}(μ-Cl)]2 (6) along with the phosphonium salt [Ph3PCHCOC6H4C6H5]Br. The compounds were characterized by elemental analysis, IR-, 1H-, 13C-, and 31P-NMR spectroscopy. Single crystal X-ray analysis of 3 reveals the centrosymmetric dimeric structure containing the ylide and HgI2. Crystallographic data for 3 are: crystal system, monoclinic; space group, P 21/n, a = 15.7744(7), b = 23.0288(9), c = 20.2867(9) Å, β = 112.237(3)°, V = 6821.4(5) Å3, and Z = 1.  相似文献   

10.
The 31P NMR spectra of C6H5XCr(CO)2P(C6H5)3 (X = H, CH3, OCH3, N(CH3)2, COOCH3) (I), p-C6H4X2Cr(CO)2P(C6H5)3 (X = COOCH3)(II) and C6H3X3Cr(CO)2P(C6H5)3 (X = CH3) (III) complexes in neutral and acidic media were investigated. The protonation of complexes I and III in trifluoroacetic acid results in the greater upfield shielding of 31P{1H} signal. In this case the complexes I (X = H, CH3, OCH3) are completely protonated at the metal, complex I (X = COOCH3)is partially protonated, while no protonation occurs in the case of complex II.Temperature-dependence of the 31P{1H} NMR spectra was investigated for complexes I (X = H, OCH3) in a 1/10 mixture of trifluoroacetic acid and toluene and for complexes I (X = COOCH3) and II in trifluoroacetic acid. The degree of protonation was found to increase with decreasing temperature.  相似文献   

11.
Reaction Behaviour of Copper(I) and Copper(II) Salts Towards P(C6H4CH2NMe2‐2)3 ‐ the Solid‐State Structures of {[P(C6H4CH2NMe2‐2)3]CuOClO3}ClO4, {[P(C6H4CH2NMe2‐2)3]Cu}ClO4, [P(C6H4CH2NMe2‐2)3]CuONO2 and [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 The reaction behaviour of P(C6H4CH2NMe2‐2)3 ( 1 ) towards different copper(II) and copper(I) salts of the type CuX2 ( 2a : X = BF4, 2b : X = PF6, 2c : X = ClO4, 2d : X = NO3, 2e : X = Cl, 2f : X = Br, 13 : X = O2CMe) and CuX ( 5a : X = ClO4, 5b : X = NO3, 5c : X = Cl, 5d : X = Br) is discussed. Depending on X, the transition metal complexes [P(C6H4CH2NMe2‐2)3Cu]X2 ( 3a : X = BF4, 3b : X = PF6), {[P(C6H4CH2NMe2‐2)3]CuX}X ( 4 : X = ClO4, 11a : X = Cl, 11b : X = Br, 14 : X = O2CMe), {[P(C6H4CH2NMe2‐2)3]Cu}ClO4 ( 6 ), [P(C6H4CH2NMe2‐2)3]CuX ( 7a : X = Cl, 7b : X = Br, 10 : X = ONO2), [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 ( 9 ) and [P(C6H4CH2NMe2‐2)3]CuCl}CuCl2 ( 12 ) are accessible. While in 3a , 3b and 6 the phosphane 1 preferentially acts as tetrapodale ligand, in all other species only the phosphorus atom and two of the three C6H4CH2NMe2 side‐arms are datively‐bound to the appropriate copper ion. In solution a dynamic behaviour of the latter species is observed. Due to the coordination ability of X in 3a , 3b and 6 non‐coordinating anions X are present. However, in 4 one of the two perchlorate ions forms a dative oxygen‐copper bond and the second perchlorate ion acts as counter ion to {[P(C6H4CH2NMe2‐2)3]CuOClO3}+. In 7 , 9 and 10 the fragments X (X = Cl, Br, ONO2) form a σ‐bond with the copper(I) ion. The acetate moiety in 14 acts as chelating ligand as it could be shown by IR‐spectroscopic studies. All newly synthesised cationic and neutral copper(I) and copper(II) complexes are representing stable species. Redox processes are involved in the formation of 9 and 12 by reacting 1 with 2 . The solid‐state structures of 4 , 6 , 9 and 10 are reported. In the latter complexes the copper(II) ( 4 ) or copper(I) ion ( 6 , 9 , 10 ) possesses the coordination number 4. This is achieved by the formation of a phosphorus‐ and two nitrogen‐copper‐ ( 4 , 9 , 10 ) or three ( 6 ) nitrogen‐copper dative bonds and a coordinating ( 4 ) or σ‐binding ( 9 , 10 ) ligand X. In 6 all three nitrogen and the phosphorus atoms are coordinatively bound to copper, while X acts as non‐coordinating counter‐ion. Based on this, the respective copper ion occupies a distorted tetrahedral coordination sphere. While in 4 and 10 a free, neutral Me2NCH2 side‐arm is present, which rapidly exchanges in solution with the coordinatively‐bound Me2NCH2 fragments, this unit is protonated in 10 . NO3 acts as counter ion to the CH2NMe2H+ moiety. In all structural characterized complexes 6‐membered boat‐like CuPNC3 cycles are present.  相似文献   

12.
Preparation and Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Dodecaborates(2?), [(C5H5N)2CH2][B12H11X]; X = Cl, Br, I [B12H12]2? reacts with dihalogenomethanes CH2X2 in presence of trifluoro acetic acid, yielding the monohalogenododecaborates [B12H11X]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of [(C5H5N)2CH2][B12H11Cl] · 2(CH3)2SO (orthorhombic, space group Pnma, a = 17.351(6), b = 16.034(5), c = 9.659(2) Å, Z = 4) and of the isotypic bromo and iodo compounds [(C5H5N)2CH2][B12H11X] (monoclinic, space group P21/n, Z = 4; for X = Br: a = 7.339(2), b = 15.275(3), c = 16.761(4) Å, β = 96.80(2)°; for X = I: a = 7.4436(8), b = 15.3510(8), c = 16.9213(16) Å, ß = 97.326(7)°) exhibit crystal lattices build up by columns of substituted boron clusters and angular dications [(C5H5N)2CH2]2+ orientated along the shortest axis which are assembled to alternating layers.  相似文献   

13.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

14.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

15.
Synthesis, Structures, and Reactivity of [(2,4,6-Ph3C6H2)Te(μ2-O)X]2 (X ? Br, I) [(2,4,6-Ph3C6H2)Te]2 reacts with iodine affording the aryltellurenic halide (2,4,6-Ph3C6H2)TeI, which is oxidized by oxygen to yield [(2,4,6-Ph3C6H2)Te(μ2-O)I]2. It crystallizes with two molecules of dichloromethane in the monoclinic space group P21/c with a unit cell of the dimensions a = 911.3(4); b = 1153.3(2); c = 2244.1(9) pm; β = 93.53(2)°, Z = 2). The analogues bromo compound [(2,4,6-Ph3C6H2)Te(μ2-O)Br]2 is obtained by the reaction of [(2,4,6-Ph3C6H2)Te(μ2-O)I]2 with NH4Br. It crystallizes with two molecules of xylene in the monoclinic space group P21/n (a = 1067.5(5); b = 1018.4(4); c = 2486.5(8) pm; β = 101.71(2)°; Z = 2). Both compounds are built up by two (2,4,6-Ph3C6H2)TeX units (X ? Br, I) which are linked by two oxgen bridges to form centrosymmetric molecules. The Te? O? Te angles are 102°. Distinct Te? O bond lengths have been found (191.4(2) and 208.6(2) pm in [(2,4,6-Ph3C6H2)Te(μ2-O)I]2 and 189.8(4)/208.4(5 pm in the bromo compound).  相似文献   

16.
The photo‐induced substitution of a CO ligand has been used to prepare the halfsandwich complexes (η3‐C3H5)V(CO)4[P(C7H7)3] ( 1 ), (η5‐C5H5)V(CO)3[P(C7H7)3] ( 2 ), (η7‐C7H7)V(CO)2[P(C7H7)3] ( 3 ), (η6‐C6H3Me3)Cr(CO)2[P(C7H7)3] ( 4 ), and (η5‐C5H5)Mn(CO)2[P(C7H7)3] ( 7 ), in which the olefinic phosphane is coordinated as a conventional two‐electron ligand through the lone pair of electrons at phosphorus. Some analogues, which are permethylated at the aromatic ring ( 2* , 4* , 7* ), were included for comparison. Subsequent photo‐elimination of another CO group from 4 or 7 converts the olefinic phosphane into a chelating four‐electron ligand, leading to (η6‐C6H3Me3)Cr(CO)[P(C7H7)22‐C7H7)] ( 5 ) and (η5‐C5H5)Mn(CO)[P(C7H7)22‐C7H7)] ( 8 ), respectively. The η2‐coordinated double bond in 5 and 8 can be displaced by trimethylphosphite to give (η6‐C6H3Me3)Cr(CO)[P(C7H7)3][P(OMe)3] ( 6 ) and (η5‐C5H5)Mn(CO)[P(C7H7)3][P(OMe)3] ( 9 ). The 31P and 13C NMR spectra of all complexes are discussed, and X‐ray structure analyses for 2 and 8 are presented. Prolonged irradiation of 7 and 8 led to a di(cycloheptatrienyl)phosphido‐bridged dimer, {(η5‐C5H5)Mn(CO)[P(C7H7)2]}2( 10 ).  相似文献   

17.
Synthesis and Molecular Structure of the Binuclear tert-Butyliminovanadium(IV) Complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] (X = OtC4H9, CH2CMe3) Syntheses of the neopentylvanadium(V) compounds tC4H9N?V(CH2CMe3)3?n(OtC4H9)n (n = 0 ( 7 ), 1 ( 6 ), 2) are described. 6 and 7 decompose by irradiation splitting off neopentane and yielding the binuclear diamagnetic neopentylvanadium(IV) complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] [X = OtC4H9 ( 8 ), CH2CMe3 ( 11 )]. All compounds obtained are characterized by 1H and 51V NMR spectroscopy. 8 has been found by X-ray diffraction analysis to be a binuclear complex with bridging tert-butylimino ligands and a vanadium—vanadium single bond. The complexes tC4H9N?V(CH2C6H5)(OtC4H9)2 and [(μ-NtC4H9)2V2(CH2SiMe3)2(OtC4H9)2] ( 10 ) have been also prepared; the crystal structure of 8 and 10 are nearly identical.  相似文献   

18.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

19.
The heterogeneous phase reaction of excess sodium salt of 2-hydroxypyridine (OHpy) with [Ru(κ2C,O-RL)(PPh3)2(CO)Cl] (1) afforded complexes of the type [Ru(κ1C-RL)(PPh3)2(CO)(Opy)] (2) in excellent yield [κ2C,O-RL is 4-methyl-6-((N-R-arylimino)methyl)phenolato-C2,O), κ1C-RL is 4-methyl-6-((N-R-arylimino)methyl)phenol-C2) and R is H, Me, OMe, Cl]. The chelation of Opy is attended with the cleavage of Ru-O and Ru-Cl bonds and iminium-phenolato → imine-phenol prototropic shift. The 12 conversion is irreversible and the type 2 species are thermodynamically more stable than the acetate, nitrite, and nitrate complexes of 1. The spectral (UV-vis, IR, NMR) and electrochemical data of the complexes are reported. In dichloromethane solution the complexes display one quasi-reversible RuIII/RuII cyclic voltammetric response with E1/2 in the range 0.65–0.69 V versus Ag/AgCl. The crystal and molecular structures of [Ru(κ1C-HL)(PPh3)2(CO)(Opy)]·2C6H6·0.5H2O, 2(H)·2C6H6·0.5H2O and [Ru(κ1C-ClL)(PPh3)2(CO)(Opy)]·2C6H6·0.25H2O, 2(Cl)·2C6H6·0.25H2O are reported, which revealed a distorted octahedral RuC2P2NO coordination sphere. The pairs (P,P), (C,O), and (C,N) define the three trans directions. The electronic structures of the complexes are also scrutinized by density functional theory.  相似文献   

20.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号