首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
(RCp)(R′Ind)ZrCl2 complexes 1 – 6 (Cp = cyclopentadienyl; Ind = indenyl; 1 , R = PhCH2 and R′ = H; 2 , R = PhCH2 and R′ = PhCH2; 3 , R = PhCH2CH2 and R′ = H; 4 , R = PhCH2CH2 and R′ = PhCH2; 5 , R = o‐Me? PhCH2CH2 and R′ = H; 6 , R = o‐Me? PhCH2 and R′ = H) were synthesized and characterized with 1H NMR, elemental analysis, mass spectrometry, and infrared spectroscopy. Their catalytic behaviors were compared with those of (Et3SiCp)(PhCH2CH2Cp)ZrCl2, (PhCH2Cp)2ZrCl2, (PhCH2‐ CH2Cp)2ZrCl2, (o‐Me? PhCH2CH2Cp)2ZrCl2, and (Ind)2ZrCl2 in ethylene polymerization in the presence of methylaluminoxane. Complex 5 showed high activity up to 2.43 × 106 g of polyethylene (PE)/mol of Zr h, and complex 4 produced PE with bimodal molecular weight distributions. The methyl group at the 2‐position of phenyl in complex 5 increased the activity greatly. The relationships between the polymerization results and the structures were analyzed with NMR spectral data. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1261–1269, 2005  相似文献   

2.
N-methylaminoalkoxides of titanium of the type Ti(OR)4?n(O · CHR′ · CH2 · NR″R?)n where R = Et and Pr1; n = 1–4; and R′ = R″ = H, R? = Me; R′ = H, R″ = R? = Me; R′ = R″ = R? = Me, synthesized by the reactions of titanium alkoxides with aminoalcohols, show interesting variations in their properties like physical state, volatility and molecular complexity. I.r. and p.m.r. spectra of these derivatives have been recorded. A few interchange reactions with methanol and tert-butanol have also been carried out. These aminoalkoxides get cleaved with acetyl chloride and undergo insertion reactions with phenylisocyanate, thus providing the first examples of insertion reactions in such derivatives.  相似文献   

3.
The stabilized phosphorus ylides, Ph3P=C(CO.R′)CO.OR; 1, R=Et, R′=CH2P+Ph3; 2, R=R′=Me; 3, R=Et, R′=Me; 4, R=Pri; R′=Me; 5, R=But; R′=Me, adopt a near planar conformation in the crystal which allows extensive electronic delocalization. The keto and alkoxylic oxygens are oriented and align favorably with the cationoid phosphorus. These conformations bring methyl hydrogens in the ester residue into proximity with the face of a phenyl group and lead to π-shielding and upfield shifts of the 1HNMR signals of 3 over a wide temperature range (-50–95°C) in (CD3)2CO, CDCl3 and DMSOd-6. Geometries of 2 and 3, optimized by using the HF 3-21 (G*) or 6-31 (G*) basis sets, are very similar to those in the crystal, but semiempirical treatments generate structures in which either the ester or keto moiety is twisted out of plane.

  相似文献   

4.
《Polyhedron》1988,7(18):1719-1724
Reaction of [MoX(CO2(NCMe)23-C3H4R)] in CH2Cl2 at room temperature with an equimolar quantity of (R′R″)CNNHCONH2 gave high yields of the bidentate coordinated semicarbazone complexes [MoX(CO)2{(R′R″)CNNHCONH2}(η3-C3H4R)] (X = Cl, Br or I; R = H or Me; R′,R″ = H or Me and Me, Et, nPr or Ph) via displacement of two acetonitrile ligands.  相似文献   

5.
Reactions of Lithium Hydridosilylamides RR′(H)Si–N(Li)R″ with Chlorotrimethylsilane in Tetrahydrofuran and Nonpolar Solvents: N‐Silylation and/or Formation of Cyclodisilazanes The lithiumhydridosilylamides RR′(H)Si–N(Li)R″ ( 2 a : R = R′ = CHMe2, R″ = SiMe3; 2 b : R = R′ = Ph, R″ = SiMe3; 2 c : R = R′ = CMe3, R″ = SiMe3; 2 d : R = R′ = R″ = CMe3; 2 e : R = Me, R′ = Si(SiMe3)3, R″ = CMe3; 2 f – 2 h : R = R′ = Me, f : R″ = 2,4,6‐Me3C6H2, g : R″ = SiH(CHMe2)2, h : R″ = SiH(CMe3)2; 2 i : R = R′ = CMe3, R″ = SiH(CMe3)2) were prepared by reaction of the corresponding hydridosilylamines RR′(H)Si–NHR″ 2 a – 2 i with n‐butyllithium in equimolar ratio in n‐hexane. The unknown amines 1 e – 1 i and amides 2 f – 2 i have been characterized spectroscopically. The wave numbers of the Si–H stretching vibrations and 29Si–1H coupling constants of the amides are less than of the analogous amines. This indicates a higher hydride character for the hydrogen atom of the Si–H group in the amide in comparison to the amines. The 29Si‐NMR chemical shifts lie in the amides at higher field than in the amines. The amides 2 a – 2 c and 2 e – 2 g react with chlorotrimethylsilane in THF to give the corresponding N‐silylation products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 e – 3 g ) in good yields. In the reaction of 2 i with chlorotrimethylsilane in molar ratio 1 : 2,33 in THF hydrogen‐chlorine exchange takes place and after hydrolytic work up of the reaction mixture [(Me3C)2(Cl)Si]2NH ( 5 a ) is obtained. The reaction of the amides 2 a – 2 c , 2 f and 2 g with chlorotrimethylsilane in m(p)‐xylene and/or n‐hexane affords mixtures of N‐substitution products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 f , 3 g ) and cyclodisilazanes [RR′Si–NR″]2 ( 6 a – 6 c , 6 f , 6 g ) as the main products. In case of the reaction of 2 h the cyclodisilazane 6 h was obtained only. 2 c – 2 e show a very low reactivity toward chlorotrimetyhlsilane in m‐xylene and toluene resp.. In contrast to Me3SiCl the reactivity of 2 d toward Me3SiOSO2CF3 and Me2(H)SiCl is significant higher. 2 d react with Me3SiOSO2CF3 and Me2(H)SiCl in n‐hexane under N‐silylation to give RR′(H)Si–N(SiMe3)R″ ( 3 d ) and RR′(H)Si–N(SiHMe2)R″ ( 3 d ′) resp. The crystal structures of [Me2Si–NSiMe3]2 ( I ) ( 6 f , 6 g and 6 h ) have been determined.  相似文献   

6.
A series of N-[chloro(diorganyl)silyl]anilines RR′Si(NR″Ph)Cl (R, R′ = Me, Ph, CH2=CH, ClCH2, Cl(CH2)3; R″ = H, Me) was prepared via the reaction of diorganyldichlorosilanes with aniline or N-ethylaniline in the presence of triethylamine.  相似文献   

7.
Preparation of New Alkylaminofluorosilanes Aminofluorosilanes of the composition RSiF2NR′R″ (R = H, CH3, C2H3, C6H5; R′ = Si(CH3)3; R″ = C(CH3)3; R′ = R″ = i-C3H7), as well as C6H5SiF2N[C(CH3)2CH2]2CH2 are obtained by the reaction of fluorosilanes with the lithium salts of the corresponding amines in a molar ratio 1:1. The further reaction of these compounds with the lithium salts of alkylamines and anilin leads to the formation of the diaminofluorosilanes RSiFNR′R″NHR? (R? = C(CH3)3, i-C3H7, C6H5). The 1H, 19F, 29Si n.m.r. and mass spectra of the above mentioned compounds are reported.  相似文献   

8.
Abstract

Dialkylbenzylphosphine imides C6H5CH2–PRR′[dbnd]N″ (R, R′ = CH3, C2H5; R″ = H, CH3, Si(CH3)3 react with aliphatic and aromatic aldehydes in benzene solution on heating to 80°C directly and in high yields according to a Horner-Wittig-reaction with formation of an olefine whereas ketones like benzophenone and acetophenone only perform an O/NR″ exchange (R″ = H).

Dialkylbenzylphosphinimide C6H5CH2–PRR′[dbnd]N″ mit R, R′ = CH3, C2H5 und R″ = H, CH3, Si(CH3)3 reagieren mit aliphatischen und aromatischen Aldehyden in benzolischer Lösung beim Erwärmen auf 80°C direkt und mit hohen Ausbeuten im Sinne einer Horner-Wittig-Reaktion unter Olefinbildung, während sich mit Ketonen wie Benzophenon oder Acetophenon nur ein O/NR″-Austausch (R″ = H) vollzieht.  相似文献   

9.
Abstract

The reactions of dihaloaminophosphines RNHPF2, (R=H, Me, tBu) and R2NPCl2 (R?Me, Et, SiMe3; R2?CH2(CH2CMe2)2 with LiOCH(CF3)2 yield the corresponding aminophosphites R2NP[OCH(CF3)2)2. Hexafluoroacetone reacts with RNH[OCH(CF3)2]2 as well as MeNHPF2 and tBuNHPF2 in good yields to the 1,3,5λ5-oxazaphosphetanes 1-4, which show rapid pseudorotation at room temperature.  相似文献   

10.
Synthesis of 4-alkoxy-1,1-dichloro-3-alken-2-ones [CHCl2C(O)C(R2)C(R1)-OR, where R, R1, R2 = Et, H, H; Me, Me, H; Et, H, Me; Me, –(CH2)2–; Me, –(CH2)3–; Et, Et, H; Et, Bu, H; Et, i-Pr, H; Et, i-Bu, H; Me, Ph, H; Me, thien-2-yl, H] from acylation of enol ethers and acetals with dichloroacetyl chloride, in ionic liquid ([BMIM][BF4] or [BMIM][PF6]) is reported. The synthesis of alkenones [R3–C(O)C(R2)C(R1)-OR], where R/R1/R2/R3 = Et/H/H/Ph, t-Bu/H/H/Ph, Me/-(CH2)4/Ph, Me/-(CH2)4/Me] from the reaction of enol ethers with benzoyl chloride or acetyl chloride, in ionic liquid [BMIM][BF4], is also reported. Last products are described for the first time.  相似文献   

11.
Optically active mixed alkoxy orthotitanates with general formula Ti(OR1)2(OR2)(OR3) (R1=Et, Bun; R2=CH2CH2OCOC(Me)=CH2; R3=menthyl, CH(Me)CH2Me, CH(Ph)CH(NHMe)Me, CH(C9H6N)(C9H14N)) were obtained for the first time by transesterification. The TiIV monomers synthesized were characterized by elemental analysis, ozonolysis, and1H and13C NMR and IR spectroscopy. Polymer products with optical activity were obtained by liquid phase radical copolymerization of TiIV-containing monomers. For Part 51, see Ref. 1. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1739–1743, September, 1999.  相似文献   

12.
The preparation and properties are described of trans-[(Ph3P)2(CO)M(RNSNR)] [ClO4] (M  RhI, IrI; R  Me, Et, i-Pr, t-Bu) and of cis- or trans-[L2Pt(RNSNR)X] [ClO4] (X  Cl?, L  Et2S, PhMe2As, PhMe2P, R  Me, t-Bu; X  CH3, L  PhMe2P, R  Me).1H and 13C NMR data show the existence of various isomers in solution which may interconvert via intra- and inter-molecular exchange processes. A general reaction scheme for the intramolecular exchange processes is discussed.  相似文献   

13.
Equimolar reactions of BuSn(OPri)3 with diethanolamines, RN(CH2CH2 OH) 2 (abbreviated as RdeaH2, where R = H or Me), afford dimeric isopropoxo-bridged six-coordinate butyltin(IV) complexes [{Bu(η3-Rdea)Sn(μ-OPri)}2] (R = H ( 1 ), Me ( 2 )). Interactions between BuSn(OPri)3 and diethanolamines (RdeaH2) in a 1:2 molar ratio yield monomeric derivatives of the type [BuSn(Rdea)(RdeaH)] (R = H ( 3 ), R = Me ( 4 )). These homometallic complexes on 1:1 reactions with an appropriate metal alkoxide form monomeric heterobimetallic complexes of the type [BuSn (Rdea)2 {M(OR′)n}] (R = H, M = Al, R′ = Pri, n = 2 ( 5 ); R = H, M = Ti, R = Pri, n = 3 ( 6 ); R = H, M = Zr, R′ = Pri, n = 3 ( 7 ); R = Me, M = Al, R′ = Pri, n = 2 ( 8 ); R = Me, M = Ti, R′ = Pri, n = 3 ( 9 ); R = Me, M = Ge, R′ = Et, n = 3 ( 10 )). The driving force behind this work was (i) to explore the utility of homometal complexes ( 1 ) ( 4 ) in assembling a metal alkoxide fragment via a condensation reaction and (ii) to gain insights into the structures of new compounds by NMR spectral data. All of these derivatives have been characterized by elemental analysis, spectroscopic (IR, NMR; 1H, 27Al, and 119Sn) studies, and molecular weight measurements. 119Sn NMR spectral studies indicate that both the homometallic ( 3 ) and ( 4 ) and heterobimetallic ( 5 ) ( 9 ) complexes exist in a solution in an equilibrium of six- and five-coordinated tin(IV) species.  相似文献   

14.
A reaction of previously synthesized germylenes and stannylenes based on aminobisphenols RN{CH2[(5-R´)(3-But)C6H2(2-O—)]}2MII, M = Ge, R = CH2(2-Py), R´ = But (1); M = Ge, R = Et, R´ = Me (2); M = Sn, R = CH2(2-Py), R´ = But (3); M = Sn, R = Et, R´ = Me (4), containing (tetrylenes 1 and 3) or not containing (tetrylenes 2 and 4) a group capable of additional donation, with allyl bromide leads to the products of the insertion of tetrylenes into the C—Br bond: RN{CH2[(5-R´)(3-But)C6H2(2-O—)]}2M(Br)All, M = Ge, R = CH2(2-Py), R´ = But (5); M = Ge, R = Et, R´ = Me (6); M = Sn, R = CH2(2-Py), R´ = But (7); M = Sn, R = Et, R´ = Me (8). The structures of obtained derivatives were confirmed by NMR spectroscopy and elemental analysis. The structures of compounds 4, 5, and 7 were studied by X-ray crystallography. Stannylene 4 was found to be monomeric in the solid phase: the coordination number of the Sn atom is 3. The insertion products 5 and 7 are characterized by the coordination number 6 for the central atom.  相似文献   

15.
Summary Tris-chelates of chromium(III) have been synthesised with five new dithiocarbamates, [RR'NCS2], where R=PhCH2 and R/t'=H, PhCH2, Me, Et and i-Pr. Magnetic moments together with electronic, i.r. and e.s.r spectra of the complexes have been described. Various ligand-field parameters have been evaluated and discussed.  相似文献   

16.
Reaction of [AuIII(C6F5)3(tht)] with RaaiR′ in dichloromethane medium leads to [AuIII(C6F5)3 (RaaiR′)] [RaaiR′=p-R-C6H4-N=N-C3H2-NN-l-R′, (1-3), R = H (a), Me (b), Cl (c) and R′= Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The nine new complexes are characterised by ES/MS as well as FAB, IR and multinuclear NMR (1H,13C,19F) spectroscopic studies. In addition to dimensional NMR studies as1H,1H COSY and1H13C HMQC permit complete assignment of the complexes in the solution phase.  相似文献   

17.
Reactions of the phosphinoacetylenes RR′PCCR″ (R  R′  Ph, R″  H, CF3, Ph, Me, t-Bu; R  R′  C6F5, R″  Ph, Me; R  Ph, R′  Me, R″  Me) with Co2(CO)8 have been studied. Complexes of four types have been characterised: (A)(RR′PC2R″)CO2(CO)6 (R  R′  C6F5, R″  Ph, Me; R  R′  Ph, R″  t-Bu), (B) (RR′PC2R″)2Co4(CO)10 (R  R′  Ph, R″  H, CF3, Ph, Me; R  R′  C6F5, R″  Me; R  Ph, R′  Me, R″  Me), (C) (RR′PC2R″)2Co2(CO)6 (R  R′  Ph, R″  t-Bu), (D) (RR′P(O)C2R″)Co2(CO)6 (R  R′  Ph, R″  t-Bu; R  R′  C6F5, R  Ph). The complexes were characterised by microanalysis, IR, NMR and where possible mass spectra. Substitution reactions of the complexes with tertiary phosphites are described. In complexes of type (A) only the alkyne function is utilised whereas the tetranuclear compounds (B) have structures in which both alkyne and phosphorus moieties are coordinated. Compounds of type (C) are simple disubstituted phosphine complexes of Co2(CO)8 and those of type (D) are μ-alkyne derivatives of acetylenic phosphine oxides. The mechanism of formation of complexes of type (B) is discussed in the light of IR data.  相似文献   

18.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

19.
The structures and stability of pentacoordinate germylenoid PhCH2(OH)CH3GeLiF were first theoretically studied by density functional theory. Two equilibrium structures, the three-membered ring (1a) and the p-complex (1b) structures, were located. Their energy are in the order of 1b > 1a. The Ge-O coordination energies at the B3LYP/6-311+G(d, p) level are 13.6 and 0.2 kJ/mol in 1a and 1b, respectively. The insertion reactions with CH3F indicate that germylenoid PhCH2(OH)CH3GeLiF is more stable than germylene PhCH2(OH)CH3Ge. The insertion barrier of 1a with CH3F is only 3.1 kJ/mol higher than that of PhCH3CH3GeLiF, indicating that the oxygen coordination PhCH2(OH)CH3GeLiF has the same stability as PhCH3CH3GeLiF.  相似文献   

20.
The B–B bond of bis(trisyl)oxadiborirane OB2R2 (R = C(SiMe3)3) is opened by amides R′CO(NHR″) to give the dioxaazadiboracyclohexanes [–BR–O–BR–NR″–CHR′–O–] (R′/R″ = H/H, H/Me, H/Et, Me/H: 5 a – d ). The amide MeCO(NHMe) yields 5 e (R′/R″ = Me/Me), when an excess of the amide is applied for 24 h, but yields an isomeric 1 : 1 adduct ( 6 e ), when a stoichiometric amount of the amide is applied for 15 h; upon refluxing this isomer in hexane, it is transformed into 5 e .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号