首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this review we present selected examples of our studies of oxovanadium(IV) and oxovanadium(V) complexes relevant for the bioinorganic chemistry of vanadium. Some of the investigated complexes are good models for different steps of vanadium metabolism or for a better understanding of the structural and electronic peculiarities of the coordination spheres of these oxocations in biomolecules. The investigated systems include ligands such as nucleotides, carbohydrates, phosphates, amino acids, oxine derivatives, porphine-like cores and other simple organic and inorganic ligands. All these complexes have been systematically investigated by means of vibrational (infrared and Raman) and electronic spectroscopy and, in some cases, also by thermal and electrochemical behavior. The potentialities and possibilities of the spectroscopic methodologies are illustrated and discussed and some general trends, useful for the structural characterization of these and similar systems, are emphasized.  相似文献   

2.
Solid chelates derived from some alkaline earth and transition metal complexes with ampicillin (Hamp, a) and amoxicillin (Hamox, b) were synthesized and characterized using elemental analysis, molar conductivity, IR, magnetic susceptibility, and thermogravimetric studies. Both drugs behave as tetradentate ligands coordinating to metal through amino, imino, and carboxylate as well as through β-lactamic carbonyl. All chelates have octahedral geometry except Cu(II) complexes which have square planar structure and uranium has pentagonal bipyramidal coordination. 1H- and 13C-NMR of the Zn(II) and UO2(VI) chelates are compared with the free ligands. The antimicrobial activity of the prepared chelates was determined.  相似文献   

3.
Abstract

The stoichiometrics and stability constants of the nickel(II), copper(II) and zinc(II) complexes of l-amino-3-methylthiopropanephosphonic acid (MetP) and 1-amino-ethanephosphonic acid (a-AlaP) have been determined pH-metrically at 25°C at an ionic strength of 0.2 mol dm?3 (KC1). From the stability data and the absorption spectra of the complexes it has been established that simple aminophosphonic acids coordinate to the nickel(II) and copper(II) ions forming chelate complexes in which the metal binding mode is bidentate with the {NH2, PO3 2-} donor set. 31P and 1H NMR measurements showed that MetP and α-AlaP exhibit similar properties in the presence of zinc(II) ions, but the ligand reacts to form a cyclic phosphonoamidate in neutral and slightly alkaline solution in the Zn(II)-α-AlaP system and at slightly acidic conditions in the Zn(II)-MetP system. This difference reveals that the latter ligand at pH > 7 prefers Zn(II) coordination involving all possible (amino, phosphonate and thioether sulfur) donor groups.  相似文献   

4.
Six complexes, [VO(L1-H)2]?·?5H2O (1), [VO(OH)(L2,3?H)(H2O)]?·?H2O (2,3), [VO(OH)(L4,5?H)(H2O)]?·?H2O (4,5), [VO(OH)(L6?H)(H2O)]?·?H2O (6), were prepared by reacting different derivatives of 5-phenylazo-6-aminouracil ligands with VOSO4?·?5H2O. The infrared and 1H NMR spectra of the complexes have been assigned. Thermogravimetric analyses (TG, DTG) were also carried out. The data agree quite well with the proposed structures and show that the complexes were finally decomposed to the corresponding divanadium pentoxide. The ligands and their vanadyl complexes were screened for antimicrobial activities by the agar-well diffusion technique using DMSO as solvent. The minimum inhibitory concentration (MIC) values for 14 and 6 were calculated at 30°C for 24–48?h. The activity data show that the complexes are more potent antimicrobials than the parent ligands.  相似文献   

5.
Mercury cyanide complexes of alkyldiamines (16), [Hg(L)(CN)2] (where L?=?en (1,2-diaminoethane), pn (1,3-diaminopropane), N-Me-en, N, N′-Me2-en, N, N′-Et2-en, and N, N′-ipr2-en), have been synthesized and characterized by elemental analysis, IR, 13C, and 15N solution NMR in DMSO-d6, as well as 13C, 15N, and 199Hg solid-state NMR spectroscopy. Complexes 1 and 2 have been studied computationally, built and optimized by GAUSSIAN03 using DFT at B3LYP level with LanL2DZ basis set. Binding modes of en and bn (where bn?=?1,4-diaminobutane) toward Hg(CN)2 are completely different. Complexes with en and pn show chelating binding to Hg(II), while bn behaves as a bridging ligand to form a polymeric structure, [Hg(CN)2-bn] [B.A. Al-Maythalony, M. Fettouhi, M.I.M. Wazeer, A.A. Isab. Inorg. Chem. Commun., 12, 540 (2009).]. The solution 13C NMR of the complexes demonstrates a slight shift of the ?C≡N (0.9 to 2?ppm) and ?C–NH2 (0.25 to 6?ppm) carbon resonances, while the other resonances are relatively unaffected. 15N labeling studies have shown involvement of alkyldiamine ligands in coordination to the metal. The principal components of the 13C, 15N, and 199Hg shielding tensors have been determined from solid-state NMR data. Antimicrobial activity studies show that the complexes exhibit higher antibacterial activities toward various microorganisms than Hg(CN)2.  相似文献   

6.
New cadmium(II) complexes with phosphine telluride ligands of the type CdX2(R3PTe)n [X?=?ClO4?, n?=?4: R?=?n-Bu (1), Me2?N (2), C5H10?N (3), C4H8?N (4) or OC4H8?N (5); X?=?Cl, n?=?2: R?=?n-Bu (6), Me2?N (7), C5H10?N (8), C4H8?N (9) or OC4H8?N (10)] have been synthesized and characterized by elemental analyses, IR and multinuclear (31P, 125Te, and 113Cd) NMR spectroscopy. In particular, the solution structures of these complexes were confirmed by 113Cd NMR at low temperature, which displays a quintuplet for each of the perchlorate complexes and a triplet for each of the chloride complexes due to coupling with four and two equivalent phosphorus atoms, respectively, indicating a four-coordinate tetrahedral geometry for the metal center. These multiplet features were further accompanied by one bond Te–Cd couplings, clearly showing that the ligand is coordinated to the metal through tellurium. The results are discussed and compared with those obtained for closely related phosphine chalcogenide analogs.  相似文献   

7.
Four new azocalix[4]arenes {5,11,17,23-tetrakis[(2-hydroxy-5-tert-butylphenylazo)]-25,26,27,28-tetrahydroxycalix[4]arene (1), 5,11,17,23-tetrakis[(2-hydroxy-5-nitro phenylazo)]-25,26,27,28-tetrahydroxycalix[4]arene (2), 5,11,17,23-tetrakis[(2-amino-5-carboxylphenylazo)]-25,26,27,28-tetrahydroxycalix[4]arene (3) and 5,11,17,23-tetrakis[(1-amino-2-hydroxy-4-sulfonicacidnapthylazo)]-25,26,27,28-tetrahydroxycalix[4]arene (4)} have been synthesized from p-tert-butylphenol, p-nitrophenol, p-aminobenzoic acid and 1-amino-2-hydroxy-4-sulphonic acid by diazo coupling reaction with p-aminocalix[4]arene. The resulting ligands (14) were treated with three transition metal salts (e.g., CuCl2·2H2O, NiCl2·6H2O or CoCl2·6H2O). Cu(II), Ni(II) and Co(II) complexes of the azocalix[4]arene derivatives were obtained and characterized by UV-vis, IR, 1H-NMR spectroscopic techniques and elemental analysis. All the complexes have a metal:ligand ratio of 2:1. The Cu(II) and Ni(II) complexes of azocalix[4]arenes are square-planar, while the Co(II) complexes of azocalix[4]arenes are octahedral with water molecules as axial ligands. The solvent extraction of various transition metal cations from the aqueous phase to the organic phase was carried out by using azocalix[4]arenes (14). It was found that, azocalix[4]arenes 1, 2 and 3 examined selectivity for transition metal cations such as Ag+, Hg+ and Hg2+. In addition, the thermal stability of metal:azocalix[4]arene complexes were also reported. Dedicated to Prof. Dr. Mustafa Yılmaz on the occasion of his 50th birthday  相似文献   

8.
利用8-羟基喹啉原位反应,通过溶剂热方法制备出3种新颖的d~(10)配合物[M_2(HL)_3]NO_3·H_2O (M=Cd (1),Zn (2,3)),H_2L为1,1-(7,7′-二-(8-羟基喹啉))。单晶结构表明,3种配合物有着相同的带正电荷的结构单元[M_2(HL)_3]~+,但由于客体分子所处空间位置的不同表现为不同的空间结构,配合物1和3结晶于六方晶系(P6_3/m),配合物2结晶于三方晶系(R3)。中心金属离子以六配位的模式与来自HL-配体上的3个氧原子和3个氮原子形成一个轻微扭曲的八面体几何构型。存在于HL-配体与客体分子(NO_3~-,H_2O)间大量的弱作用力在结构空间堆积上起到了重要的作用。3种配合物均具有良好的热稳定性和绿色荧光发射性质。同时,通过从配合物1中提取出原位生成的配体H_2L,首次报道了其蓝色荧光发射性质。  相似文献   

9.
The 13C, 15N CP MAS NMR and FT-IR spectra of dioxomolybdenum (VI) complexes of trans-N,N′-bis-(R-salicylidene)-1,2-cyclohexanediamine (R=H, R=3,5-diCl, R=3,5-diBr, R=4,6-diOCH3), trans-N,N′-bis-(2-OH-naphthylidene)-1,2-cyclohexanediamine and trans-N-(salicylidene)-N′-(2-OH-naphthylidene)-1,2-cyclohexanediamine have been measured. Comparative analysis of the NMR and IR spectra of the complexes with those of the corresponding ligands has shown that the complexation of the di-Schiff bases leads to changes in the conformation of the ligands and the charge redistribution. The asymmetric structure and non-planar structure of the complexes have been suggested.  相似文献   

10.
Abstract

The organotin(IV) complexes, SnPh2La (1), SnMe2La (2), SnBu2La (3), SnPh2Lb (4), SnMe2Lb (5), SnPh2Lc (6), SnMe2Lc (7), and SnBu2Lc (8) were obtained by reaction of SnR 2Cl2 (R = Ph, Me, and Bu) with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2La), 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide (H2Lb), and 1-(2-hydroxy-3-methoxybenzylidene)-4-phenylthiosemicarbazide (H2Lc). The synthesized complexes have been investigated by elemental analysis, IR, 1H NMR, and 119Sn NMR spectroscopy. The data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination number of tin is 5. The in vitro antibacterial activities of the ligands and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and compared with the standard antibacterial drugs.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures and tables]  相似文献   

11.
Lithocholic acid N-(2-aminoethyl)amide (1) and deoxycholic acid N-(2-aminoethyl)amide(2) have been prepared and characterized by1H, 13C and 15N NMR. The accurate molecular masses of 1 and 2 have been determined by ESI MS. The formation of the Cd2+-complexes (1+Cd and 2+Cd) in CD3OD solution have been detected by 1H,13C, 15N and 113Cd NMR. The 13C NMR chemical shift assignments of 1 and 2 and their Cd2+-complexes are based on DEPT-135 and z-GS 1H,13C HMQC experiments as well as comparison with the assignments of the related structures. The 15N NMR chemical shiftassignments of the ligands and theirCd2+-complexes are based on z-GS1H,15N HMBC experiments. 13C NMR chemical shift differences between 1and its 1:1 Cd2+-complex based on ab initiocalculations at Hartree-Fock SCI-PCM level using3-21G(d) basis set are in agreement with theexperimental shift changes observed onCd2+-complexation.  相似文献   

12.
13.
The reaction of mercury(II) chloride with neutral phosphine telluride ligands (R3PTe) produced new mercury(II) complexes, HgCl2(R3PTe)2 [R = Me2N (1), Et2N (2), C4H8N (3), C5H10N (4) or n-Bu (5)]. Attempts to isolate the complex of HgCl2 with the morpholinyl ligand, (OC4H8N)3PTe, were unsuccessful. Complexes 15 have been characterized by elemental analyses, IR, and multinuclear (31P, 125Te, and 199Hg) NMR spectroscopy. The solution behavior of the complexes was investigated using variable temperature NMR spectroscopy in the presence of excess ligand and indicated fast ligand exchange on the NMR timescale at room temperature. The metal–ligand exchange barriers in these complexes were estimated to be in the range 8–11 kcal/mol. The results suggest that a slight change in the nature of the substituents on the phosphorus of the ligand can contribute considerably to the lability of the complex obtained. The NMR data are discussed and compared with those obtained for related phosphine chalcogenide systems.  相似文献   

14.
The preparation and characterization of a series of octahedral complexes [SnF4L2] (L = (Me2N)3PO (1), L = (R2N)2P(O)F; R = Me (2); Et (3) or L = R2NP(O)F2; R = Me (4); Et (5)) are described. These new adducts have been characterised by multinuclear (19F, 31P and 119Sn) NMR, IR spectroscopy and elemental analysis. The NMR data particularly the 19F NMR spectra showed that the complexes exist in solution as mixtures of cis and trans isomers. The solution behaviour of the complexes studied by variable temperature NMR in the presence of excess ligand indicated that, unlike in the SnCl4 analogues, the ligand exchange at room temperature is slow for 13 and fast only for 4 and 5. The metal–ligand exchange barriers in [SnF4L2] and [SnCl4L2] systems were estimated and compared. The results indicate that in addition to the difference in the Lewis acidity between SnF4 and SnCl4 the nature of the substituents (fluorine atoms) on the phosphorus atom of the ligand can contribute considerably to the lability of the complex obtained.  相似文献   

15.
The reaction of phenalene with Cr(CO)3Py3/BF3·OEt2 afforded a mixture of two isomeric complexes, tricarbonyl(6a,7-9,9a,9b-·6-phenalene)chromium (1) and tricarbonyl(3a,6a,9b,4-6-·6-phenalene)chromium (2). Deprotonation of the mixture of compounds1 and2 followed by treatment with MeI, BunI, or D2O gave complexesexo-1-R-1 (3–5: R=Me (3), Bun (4), or D (5)). The molecular geometry of complex3 was established by X-ray structural analysis. Heating of complex5 in toluene or C6F6 at 90–110 °C resulted in redistribution of deuterium among positionsexo-1,endo-1, and 3 in the resulting complexes of types1 and2 via sigmatropic shifts of the H exo and H endo atoms in the nonaromatic ring as well asvia inter-ring migrations of the tricarbonylchromium group. In the case of3, the methyl label is distributed among positionsexo-1 and3 to form isomeric complexes with similar structures (exo-1-Me-2 (6), 3-Me-2 (7), and 3-Me-1 (8), respectively)via processes analogous to those observed in the case of isomerization of compound5 (except for migration of the H exo atom). The mechanisms of these rearrangements are discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1863–1880, October, 1997.  相似文献   

16.
Abstract

Replacement reactions of bis(diethyldithiocarbamato)antimony(III) chloride have been carried out with oxygen and sulfur donor ligands such as disodium oxalate, sodium acetate, sodium salicylate, benzoic acid, thioglycolic acid, acetylacetone, thiphenol, ethane-1,2-dithiol, and 2,2-dimethylpropane-1,3-diol to give mixed bis(diethyldithiocarbamato)antimony(III) derivatives of the corresponding ligands. These derivatives have been characterized by the physicochemical [melting point and molecular weight determination, elemental analysis (C, H, N, S, and Sb)], spectral [FT-IR, far-IR, NMR (1H and 13C)], ESI-mass, powder XRD, and SEM studies.

[Supplementary materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental files: Additional figures and tables]  相似文献   

17.
The migration of the double bond in the allylcarboxamide ligands of (μ-H)Os3(μ-O=CN RCH2CH=CH2) (CO)10 (R=H (1) or CH3 (2)), (μ-D)Os3(μ-O=CNDCH2CH=CH2) (CO)10, and (μ-H)Os3(μ-O=CNHCD2CH=CH2)(CO)10 clusters was studied by1H,2H, and13C NMR spectroscopy. Neither μ-D nor ND groups in the deuterated complexes are directly involved in prototropic processes of allylic rearrangement. Initially, the deuterium atom of the CD2 group migrates to the ψ-carbon atom of the allyl fragment to form the −CD=CH-CH2D propenyl moiety, in which the deuterium and hydrogen atoms are gradually redistributed between the ψ-and β-carbon atoms. The triosmium cluster complexes containing the bridging carboxamide ligands O=CNRR' catalyze the allylic rearrangement ofN-allylacetamide. Based on the data obtained, the probable scheme of the allylic rearrangements in clusters1 and2 was proposed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2182–2186, November, 1999.  相似文献   

18.
顺磁类的核磁共振研究大多是简单化合物,偏重理论方面的研究,对镧系配合物曾有报道。由于这类样品对空气和湿气极为敏感,在国内外研究顺磁性1H谱甚少。本文研究了含氯桥的醚基取代环戊二烯镧系配合物二聚体的1H化学位移,线宽,弛豫时间T1和磁化率,从中找出了顺磁类有机镧系配合物1H NMR的规律。  相似文献   

19.
Complexes derived from ampicillin (L1) and amoxicillin (L2) with (Mg(II), Ca(II), Zn(II), Cu(II), Ni(II), Co(II), Ce(III), Nd(III), UO2(VI), Th(IV)) were prepared and characterized by elemental analysis, electrical conductivity measurements, magnetic susceptibility, IR, UV/Vis, and thermogravimetry. The formed complexes can be formulated as (ML(H2O)3(NO3) n ) except for Ce(III) which gave (CeL(H2O)3(Cl)2). The 1H NMR spectra of the Zn(II) complexes are compared to spectra of the ligands. The shift (δ) gave information about the chelating center of the ligands. The ligands and the synthesized complexes, derived from some alkali earth and transition metal ions, were tested as antibacterial reagents. The formed complexes had enhanced activity.  相似文献   

20.
Mercury(II) halide complexes [HgX2(P(2-py)3)2] (X?=?Br (1), Cl (2)) and [HgX2(PPh(2-py)2)2] (X?=?Br (3), Cl (4)) containing P(2-py)3 and PPh(2-py)2 ligands (P(2-py)3 is tris(2-pyridyl)phosphine and PPh(2-py)2 is bis(2-pyridyl)phenylphosphine) were synthesized in nearly quantitative yield by reaction of corresponding mercury(II) halide and appropriate ligands. The synthesized complexes are fully characterized by elemental analysis, melting point determination, IR, 1H, and 31P-NMR spectroscopies. Furthermore, the crystal structure of [HgBr2(PPh(2-py)2)2] determined by X-ray diffraction is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号