首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel bisphenol-AP-aniline-based benzoxazine monomer (B-AP-a) was synthesized from the reaction of 4,4′-(1-phenylethylidene) bisphenol (bisphenol-AP) with formaldehyde and aniline. The chemical structures were identified by FT-IR, 1H and 13C NMR analyses. The polymerization behavior of the monomer and the types of hydrogen bonding species were monitored by differential scanning calorimetry (DSC) and FT-IR. The curing kinetics was studied by isothermal DSC and the isothermal kinetic parameters were determined. The thermal properties of cured benzoxazine were measured by DSC and thermogravimetric analysis (TGA). The bisphenol-AP-aniline-based polybenzoxazine (poly(B-AP-a)) exhibited higher glass transition temperature (Tg) and better thermal stability than corresponding bisphenol A-aniline-based polybenzoxazines (poly(BA-a)). The Tg value of poly(B-AP-a) is 171 °C. The temperatures corresponding to 5% and 10% weight loss is 317 and 347 °C, respectively, and the char yield is 42.2% at 800 °C. The isothermal curing behavior of B-AP-a displayed autocatalysis and diffusion control characteristics. The modified autocatalytic model showed good agreement with experimental results.  相似文献   

2.
Two thermoset systems based on maleimides and diglycidyl ether of bisphenol A (DGEBA) cured with p-aminobenzoic acid were characterized in terms of thermal and electrical behavior. Thermal characterization has been undertaken by means of thermogravimetric analysis in nitrogen atmosphere up to 600°C using simultaneous thermogravimetric/Fourier transform infrared/mass spectrometry (TG/FT-IR/MS) analysis. In the first stage of thermal degradation, the global kinetic parameters [activation energy (Ea) and preexponential factor (log A1 (s−1))] were calculated using the isoconversional method of Friedman. The energies variation as well as the shape of the differential thermal analysis curves suggests that the thermal decomposition process occurred in multiple stages. The evolved gases analysis was conducted by simultaneous TG/FT-IR/MS coupled techniques. Dielectric relaxation spectroscopy characterization was also made.  相似文献   

3.
Two new symmetrical bent-core liquid crystalline dimers (B-DA4 and B-DA12) bearing diacetylenes spacer and different terminal alkyl chains were successfully synthesised via Sonagashira coupling reaction. The molecular structures of these dimers were confirmed by 1H nuclear magnetic resonance (NMR), Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy, mass spectrometry, and elemental analysis. Their thermal stability and liquid crystalline properties were characterised by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarised light microscopy (PLM), and small-angle X-ray scattering (SAXS). Results showed that the diacetylene group may be thermal polymerised at about 260°C far from thermal decomposition. The dimers exhibited monotropic phase behaviour and typical layered-structure phase with long-range order on a length scale of about 6.3 nm was observed. The results mentioned above offer a promising opportunity to design polydiacetylene nanowires by thermal, UV irradiation, or scanning tunnelling microscope (STM) tip-induced polymerisation.  相似文献   

4.
Zhao  Yang  Jin  Bo  Zheng  Tian  Peng  Rufang 《Cellulose (London, England)》2022,29(12):6579-6593

The thermal decomposition or even explosion of nitrocellulose during long-term storage is prevented by adding stabilizers to nitrocellulose-based propellants. A series of novel arylmalonamide[70]fullerocyclopropane (3a–c) were synthesized through Bingel reaction. The molecular structures of 3a–c were verified through 1H NMR, 13C NMR, Fourier transform infrared spectroscopy (FT-IR), UV–visible spectroscopy, and mass spectrum. The thermal stability of 3a–c to nitrocellulose was studied by methyl violet paper test and iso-thermogravimetry method, and the results showed that the stability of 3a–c to nitrocellulose was significantly better than that of the [60]fullerene-based stabilizers. The thermal stability of 3a–c to nitrocellulose improved as the increase of the carbon chain length on the p-position of the benzene ring. The effects of 3a–c on the thermal decomposition of nitrocellulose were obtained by differential thermal analysis, and the results showed that the critical temperature of the thermal explosion of nitrocellulose can be increased by 0.1–2.8 °C by 3a–c. The thermal stability of 3a–c to nitrocellulose in adiabatic environment was confirmed by accelerating rate calorimetry. In addition, the stabilization mechanism was studied through ESR and FT-IR, and the results showed that 3a–c can react with nitrogen oxide radicals released by nitrocellulose. These arylmalonamide[70]fullerocyclopropane with excellent thermal stability and strong radical scavenging ability can be used as a promising stabilizer for single and double based propellants.

  相似文献   

5.
A new energetic plasticizer, acyl-terminated glycidyl azide polymer (GAP), was synthesized through the reaction between 2,4,6-trinitrobenzoyl (TNB) chloride and GAP. The TNB-GAP structure was confirmed by FT-IR, UV-vis, 1H NMR, and 13C NMR. The glass transition temperature (T g ) of TNB-GAP was evaluated by differential scanning calorimetry (DSC), and the thermal stability of TNB-GAP was tested by thermogravimetric analysis (TGA). DSC traces showed that TNB-GAP had a T g of ?46.01°C. TGA curves showed that the thermo-oxidative degradation of TNB-GAP in air was a two-step reaction, and the percentage of degraded TNB-GAP nearly reached 100% at 650°C. Exothermic decomposition reaction kinetic parameters of TNB-GAP were also studied using the non-isothermal DSC method. Results indicated that the values of apparent activation energy of TNB-GAP were 80.16 and 162.92 kJ/mol, and the values of the pre-exponential constant were 1.75 × 1010 and 1.22 × 1016.  相似文献   

6.
Abstract

In this work, two polysulfide polymers were synthesized using aromatic organic monomer (α,α′-dichloro-p-xylene) and sodium disulfide (Na2S2) and sodium tetrasulfide (Na2S4) aqueous monomers. Then, the curing process of the polymers was carried out at 170° C using a rheometer. The structural characteristics of synthesized and cured samples were identified by Raman and Fourier transform infrared (FT-IR) spectroscopies. Also, morphological and thermophysical properties of samples were studied by using the X-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. Moreover, the molecular weight of the synthesized samples was determined by proton nuclear magnetic resonance (1H NMR). Furthermore, the mechanical properties and hardness of the samples were investigated by tensile test and Shore A. The results showed that in the noncured samples during the increase of sulfur in the polymer structure, solubility was increased whereas it decreased the hardness, melting point (Tm ) and glass transition temperature (Tg ) of polymers. But in cured samples, hardness and Tg increase by increasing sulfur and the mechanical properties also improved. This is due to the increase in crosslinks. Also, Tm and solubility are not observed due to the formation of crosslinks.  相似文献   

7.
Abstract

In this work, three epoxy resins including diglycidyl ethers of N,N′-bis(2-hydroxyethyl)pyromellitimide (DIDGE), bisphenol-A (BADGE), and polyethylene glycol (PEDGE) were isothermally cured by an amine curing agent possessing N,N′-disubstituted pyromellitimide units (denoted by DIDAM). DIDGE resin was synthesized from the reaction of N,N′-bis(2-hydroxyethyl)pyromellitimide with an excess of epichlorohydrin. Also, DIDAM curing agent was prepared from the reaction of pyromellitic dianhydride with an excess of ethylene diamine. Completion of the isothermal curing processes was approved by both Fourier transform-infrared spectroscopy and non-isothermal differential scanning calorimetry (DSC). The DSC traces showed only the phase transitions related to the thermal degradation of the resulting thermosets. According to the thermogravimetric analyses, the DIDGE/DIDAM thermoset showed higher thermal stability at temperatures above 425?°C than the other two thermosets. While BADGE/DIDAM and PEDGE/DIDAM thermosets showed about 70% weight loss in the thermal range of 400–850?°C, DIDGE/DIDAM thermoset was encountered with only about 40% weight loss. The glass transition temperatures (Tg ) of the resulting thermosets were determined using tan δ vs temperature plots obtained from dynamic mechanical thermal analysis. The Tg values of BADGE/DIDAM, DIDGE/DIDAM, and PEDGE/DIDAM thermosets were found to be 211?°C, 189?°C, and 81?°C, respectively.  相似文献   

8.
Two series of new linear polyesters containing sulfur in the main chain were obtained by melt polycondensation of naphthalene-1,4-bis(methylthioacetic acid) (N-1,4-BMTAA) or naphthalene-1,5-bis(methylthioacetic acid) (N-1,5-BMTAA) with some aliphatic diols using a 0.05 molar excess of diol. Softening temperatures ranging from 55 to 130°C, reduced viscosities in the range of 0.15–0.39 dL/g, and low-molecular weights were their characteristic. The structure and thermal properties of all polyesters were examined by using elemental analysis, FT-IR and 1H-NMR spectroscopy, X-ray diffraction analysis, differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorymetry (DSC). The kinetics of polyester formation by uncatalyzed melt polycondensation was studied in a model system: N-1,4-BMTAA or N-1,5-BMTAA and 2,2′-oxydiethanol (ODE) at 150, 160, and 170°C. Reaction rate constants (k3) and activation parameters (ΔG, ΔH, ΔS) from carboxyl group loss were determined using classical kinetic methods. Hydroxyl-terminated polyesters derived from 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were used for preparation of the polyurethanes by melt polyaddition with hexamethylene diisocyanate (HDI). They were characterized by reduced viscosity, FT-IR spectroscopy, X-ray diffraction analysis, TGA, DSC, polarizing microscope observation, and hardness and tensile properties. The resulting polyurethanes behave like high-elasticity thermoplastic elastomers, except the one derived from N-1,5-BMTAA and 1,6-hexanediol-based polyester. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2359–2369, 1998  相似文献   

9.
A series of difunctional fluorene-based benzoxazine monomers were synthesized from the reaction of 9,9-bis-(4-hydroxyphenyl)-fluorene with formaldehyde and primary amines including aniline, o-toluidine, n-butylamine, and n-octylamine. Their chemical structures were confirmed by FT-IR, 1H and 13C NMR analyses. The curing behaviors of the precursors were monitored by differential scanning calorimetry (DSC) and FT-IR. The thermal properties of cured polymers were evaluated with DSC and thermogravimetric analysis (TGA). The fluorene-based polybenzoxazines show the typical curing characteristic of oxazine ring-opening for difunctional benzoxazines centred at 231-250 °C, and remarkably higher glass transition temperature and better thermal stability ascribed to the high rigidity, high aromatic content, and intermolecular and intramolecular hydrogen bonding. The thermal decomposition temperature and char yield of aromatic amine-fluorene-based polybenzoxazines are much higher than those of aliphatic amine-based polybenzoxazines.  相似文献   

10.
A novel hydroxyl‐ethynyl‐arene (HEA) resin was synthesized via Aldol condensation and Sonogashira reaction. The structure of the obtained resin was confirmed by the techniques of mass spectroscopy (MS), gel permeation chromatography (GPC), proton nuclear magnetic resonance spectroscopy (1H‐NMR), Fourier transform infrared spectroscopy, (FT‐IR) and elemental analysis (EA). Differential scanning calorimetry (DSC) results showed an exotherm at the temperature range of 187°C–245°C, attributable to crosslinking reaction of the acetylene groups. After thermal cure, the obtained cured resin possessed excellent thermal stability. Thermal gravimetric analysis (TGA) in nitrogen showed the Td5 (temperature of 5% weight loss) was about 400°C, and the char yield in nitrogen was about 78% at 900°C. The laminate composite of HEA resin was prepared and its mechanical and thermal properties were determined. The usefulness of the HEA resin as matrix for ablative composite was evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A bifunctional benzoxazine monomer, 6,6′‐bis(3‐allyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazinyl) sulfone (BS‐ala), was synthesized from bisphenol‐S, allylamine and formaldehyde via a solution method. The chemical structure of BS‐ala was confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and elemental analysis. The polymerization behavior of BS‐ala was investigated by FTIR, solid‐state 13C NMR, and differential scanning calorimetry (DSC). The oxazine ring opening polymerization is prior to the addition polymerization of allyl group, and the exothermic peaks corresponding to the two reactions appear partially overlapped in the DSC curve. The storage modulus of the resultant polybenzoxazine at 25°C is about 3.9 GPa, and the glass transition temperature is 254°C. The 5% and 10% weight loss temperatures of the polybenzoxazine are about 335°C and 361°C in both air and nitrogen, respectively. The char yield is about 58% at 800°C in nitrogen, whereas almost no residue is remained at 700°C in air. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

The synthesis of two new methacrylate esters containing morpholine and pyrrolidine group are described. The monomers produced from the reaction of corresponding morpholino chloroacetamide and pyrrolidino chloroacetamide with sodium methacrylate were polymerized in DMSO solution at 65°C using AIBN as an initiator. The monomers and their polymers were characterized by Fourier transform infrared (FTIR), 1H‐ and 13C‐NMR spectroscopy. The glass transition temperature of the polymers were investigated by DSC and thermal decomposition activation energies were calculated by the Ozawa method using the SETARAM Labsys thermogravimetric analysis (TGA) thermobalance, respectively. By using gel permeation chromatography, weight average (M¯w) and number average (M¯n) molecular weights and polidispersity indices of the polymers were determined.  相似文献   

13.
Abstract

Several poly(aryl ether)s have been prepared by the condensation of 1,3‐bis(4‐hydroxy phenyl) benzene with different trifluoromethyl activated bis‐fluoro compounds. IR, 1H and 13C NMR, and elemental analyses have established the resulting polymer structures. The properties of the polymers have been evaluated by DSC, TGA, dynamic mechanical analysis (DMA) and stress–strain analysis. The polymers 1a and 1c showed semi‐crystalline behavior as evident by sharp crystalline melting peaks at 299°C and 330°C along with glass transitions at 202°C and 216°C, respectively. The polymers showed very good thermal stability in air, high modulus, and high tensile strength with low elongation at break.  相似文献   

14.
Four new cross-linked polymers poly(vinyl m-nitrobenzene)-polyglycidylazides (PVMNB-GAPs) were successfully synthesized using toluene diisocyanate as the cross-linking agent. Their structure was confirmed by their FTIR, UV–Vis, 1H and 13C NMR spectroscopy. Moreover, the thermal properties of cross-linked polymers were evaluated by DTA, TGA and DSC techniques, which confirmed that synthesized polymers exhibited good resistance to thermal decomposition up to 200°C. In addition, their compatibility with the main energetic components of 2,4,6-trinitrotoluene-based melt-cast explosives were also evaluated by the non-isothermal differential thermal analysis method.  相似文献   

15.
鲁在君 《高分子科学》2012,30(2):250-257
The novel benzoxazine monomer containing phosphorus has been synthesized based on multifunctional amine route from bis(4-aminophenyl)phenylphosphate,p-cresol and formaldehyde.Subsequently,the benzoxazine monomer was thermo-cured into polybenzoxazine containing phosphorus.The chemical structures were identified by nuclear magnetic resonance(NMR),Fourier transform infrared spectroscopy(FT-IR).The curing reaction was monitored by differential scanning calorimetry(DSC) and FT-IR.The thermal and flame-retardant properties of obtained polybenzoxazine were evaluated by dynamic mechanical thermal analysis(DMA),thermal gravimetric analysis(TGA) and oxygen index meter, respectively.The results show that the novel polybenzoxazine has high limiting oxygen index(38.1) and glass transition temperature(232℃).  相似文献   

16.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
1,1,3,3‐Tetra(1H‐tetrazol‐5‐yl)propane‐based energetic salts were synthesized in a simple and straightforward manner. The structures of these new salts were determined by 1H and 13C NMR spectroscopy, IR spectroscopy, MS, and elemental analysis. All of these compounds showed good thermal stabilities above 180 °C, as confirmed by thermogravimetric–differential thermal analysis (TG–DTA) measurements. Moreover, these salts also exhibited high positive enthalpies of formation, high nitrogen content, good thermal stabilities, and moderate detonation properties.  相似文献   

18.
A novel cycloaliphatic triepoxide, 1,1‐bis(2′,3′‐epoxycyclohexyloxymethyl)‐3,4‐epoxycyclohexane ( II ), and its precursor, 1,1‐bis(2′‐cyclohexenyloxymethyl)‐3‐cyclohexene, were synthesized. Their chemical structures were confirmed with IR spectroscopy, elemental analysis, and 1H NMR spectroscopy. II was easily cured with hexahydro‐4‐methylphthalic anhydride with 1,3,5‐triethylhexahydro‐s‐triazine as a curing accelerator. The physical properties of the cured product were examined with thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. Compared with the commercial diepoxide ERL‐4221 under the same curing conditions, the cured product based on II showed a much higher glass‐transition temperature (198 °C), a higher crosslinking density (2.08 × 10?3 mol/cm3), and a lower coefficient of thermal expansion [6.2 × 105(/°C)]. II may become a promising candidate material for modern microelectronic packaging. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2799–2804, 2001  相似文献   

19.
The polymorphic transformation of indomethacin (IMC) in the presence of Precirol during heating was investigated by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, microscopic Fourier transform infrared (FT-IR)/DSC system, and powder X-ray diffractometry with heating. The results indicate that in the presence of Precirol the original γ form of IMC was first transformed to a transition state, and then to a new polymorph by heating or exposure to IR radiation. The transition state of the melted sample gave three endothermic peaks, at 34, 48 and 127°C, and one exothermic peak, at 54°C. The stable melted sample exhibited two endothermic peaks, at 58 and 127°C, which were due to the fusion of Precirol and the new polymorph of IMC, respectively. This new polymorph of IMC also exhibited two specific IR absorption peaks, at 1693 and 1675 cm?1. Microscopic FT-IR/DSC was used to examine the correlation between the structural transformation and its thermal response, and demonstrated the existence of the transition state of the melted sample. X-ray diffractometry with heating confirmed the appearance of the new polymorph of IMC in the presence of Precirol after heating.  相似文献   

20.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号