首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three mononuclear organotin(IV) complexes supported by Schiff bases have been synthesized. The complexes [(C6H5)2Sn(L)] ( 1 ), [(t‐Bu)2Sn(L)] ( 2 ) and [(t‐Bu)2Sn(L')] ( 3 ) (L, L' = deprotonated Schiff bases) were obtained in good yield by the reaction of Schiff bases H 2 L or H 2 L′ with corresponding diorganotin dichlorides respectively. All newly synthesized complexes were characterized by means of FT‐IR spectroscopy, elemental analysis and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. In addition, single crystal X‐ray diffraction analyses were employed to establish the solid state molecular structures of these complexes. The structures of 1 – 3 reveal that all complexes are mononuclear with a five‐coordinated tin(IV) centre in it. The absorption and emission properties of all complexes have been investigated. Moreover, cytotoxicity and fluorescence cell imaging studies of theses complexes have been performed.  相似文献   

2.
The Schiff bases H2L1 and H2L2 have been prepared by the reaction of 2-amino-4-chlorophenol with pyrrole-2-carbaldehyde and 2-hydroxy-1-naphtaldehyde, respectively, and HL3 from reaction of 2-(aminomethyl)pyridine with 2-hydroxy-1-naphtaldehyde. Organotin complexes [SnPh2(L1)] (1), [SnPh2(L2)] (2), [SnMe2(L2)] (3) and [SnPhCl2(L3)] (4) were synthesized from reaction of SnPh2Cl2 and SnMe2Cl2 with these Schiff bases. The synthesized complexes have been investigated by elemental analysis and FT-IR, 1H NMR and 119Sn NMR spectroscopy. In complexes the Schiff bases are completely deprotonated and coordinated to tin as tridentate ligands via phenolic oxygen, pyrrolic, and imine nitrogens in 1, two phenolic oxygens and imine nitrogen in 2 and 3, and phenolic oxygen, imine and pyridine nitrogens in 4. The coordination number of tin in 1, 2, and 3 is five and in 4 is six.  相似文献   

3.
Abstract

Schiff bases S-benzyl- and S-methyl-β-N-(2-hydroxyphenyl)methylene dithiocarbazate (H2L1 and H2L2, respectively) and S-benzyl- and S-methyl-β-N-(2-chlorophenyl)methylenedithiocarbazate (HL3 and HL4, respectively) were prepared. Then organotin(IV) complexes [SnPh2(L1)] (1), [SnMe2(L1)] (2), [SnPh2(L2)] (3), [SnMe2(L2)] (4), [SnPh2Cl(L3)] (5), and [SnPh2Cl(L4)] (6) were obtained from the reaction of Schiff bases with SnR2Cl2 (R = Ph and Me). The synthesized complexes have been investigated by elemental analysis and IR, 1H NMR, and 119Sn NMR spectroscopy. Spectroscopic studies show that, in complexes 1–4, the Schiff base acts as a tridentate dianionic ligand and coordinates through the thiol group, imine nitrogen, and phenolic oxygen. The coordination number of tin is five. In complexes 5 and 6, the ligand is monoanionic and unidentate, and coordinated only via the thiol group, and the azomethine nitrogen is not involved in coordination to tin. Therefore the coordination number of tin is four.

GRAPHICAL ABSTRACT   相似文献   

4.
Three new diorganotin(IV) complexes, [Me2Sn(BDET] (2), [Bu2Sn(BDET)] (3), and [Ph2Sn(BDET)] (4), were synthesized by reacting R2SnCl2 (R = Me, Bu, and Ph) with 5-bromo-2-hydroxybenzaldehyde-N(4)-ethylthiosemicarbazone [H2BDET, (1)] in the presence of KOH in absolute methanol. The newly synthesized complexes were characterized by elemental analysis, molar conductivity, UV–vis, FT-IR, 1H, 13C, and 119Sn NMR spectroscopies. The molecular structure of 4 was confirmed by X-ray crystallography. X-ray crystallography revealed that the doubly deprotonated O,N,S-tridentate thiosemicarbazone coordinates to tin(IV), resulting in a distorted trigonal bipyramidal geometry. Their 1H, 13C, and 119Sn NMR spectra support a five-coordinate tin(IV) in solution for all complexes, in accord with the solid-state X-ray structure determined for 4. Compounds 14 were evaluated for their antibacterial activities against Staphylococcus aureus, Enterobacter aerogenes, Escherichia coli, and Salmonella typhi. The results exhibited that 24 were active with comparable potency compared to the standard drug. Antibacterial studies also indicated that the complexes have potential for biological evaluation.  相似文献   

5.
A series of binuclear Schiff-base complexes of zinc(II) and mercury(II) containing bidentate ligands (HL) [HL?=?salicylidene-2-methyl-1-aminobenzene (HL1), salicylidene-2-aminopyridine (HL2), and salicylidene-3-nitro-1-aminobenzene (HL3)] with “N” and “O” donors have been synthesized by simple metathetic reactions of anhydrous metal chlorides with sodium salts of Schiff bases (in tetrahydrofuran (THF)/MeOH) in equimolar ratio to produce [(µ-Cl)2M2(L)2?·?xTHF] [where M?=?Zn(II) and Hg(II); L?=?HL1, HL2, and HL3; x?=?0 for (1), (4), (6) and x?=?2 for (2), (3), (5)]. The main emphasis on the complexes [(µ-Cl)2M2(L)2?·?2THF] (2), (3), and (5) is given due to their five-coordinate environment around metal ions. The complexes have been characterized by elemental analyses (M, Cl, C, H, N), melting point, and spectral (FT-IR, 1H-NMR, and 13C-NMR) studies. The structural composition of the complexes has been determined by FAB-MS spectral studies. FAB-MS showed the isotopic molecular ion peak [M+] and fragments supporting the formulation. Powder X-ray diffraction study of 6 is also reported showing the crystallite size (404.5?Å) of the complex.  相似文献   

6.
Three new diorganotin(IV) complexes, [Me2Sn(L)] (2), [Bu2Sn(L)] (3), and [Ph2Sn(L)] (4) [where H2L (1) = 2-hydroxy-5-methylbenzaldehyde-N(4)-cyclohexylthiosemicarbazone] have been synthesized by reacting the corresponding diorganotin(IV) dichloride with H2L (1) in absolute methanol in the presence of potassium hydroxide. All the compounds have been characterized by CHN analyses, UV–vis, FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. The molecular structures of H2L (1) and 2 have been confirmed by single crystal X-ray diffraction analysis. H2L (1) is found to be in the thiol tautomeric form. The X-ray structure of 2 showed that H2L is a tridentate ligand and binds to the tin(IV) atom via the phenolic oxygen, azomethine nitrogen, and thiolate sulfur. Complex 2 has a triclinic structure and the coordination geometry of tin(IV) is distorted trigonal bipyramidal. The sulfur and oxygen are in axial positions while the azomethine nitrogen of 1 and two methyl groups occupy the equatorial positions. The C-Sn-C angles determined from 1J(119Sn, 13C) for 2, 3, and 4 are 124.35°, 123.11°, and 123.82°, respectively. The values of δ(119Sn) for 2, 3, and 4 are ?153.4, ?180.59, and ?158.3 ppm, respectively, indicating five-coordinate tin(IV). From NMR data a distorted trigonal-bipyramidal configuration at each tin is proposed.  相似文献   

7.
《Polyhedron》1999,18(20):2687-2696
Diorganotin(IV) complexes of the general formula R2SnL (R=Ph, n-Bu and Me) have been prepared from diorganotin(IV) dichlorides (R2SnCl2) and tetradentate Schiff bases (H2L) containing N2O2 donor atoms in the presence of triethylamine in benzene. The Schiff bases, H2L, were derived from salicylaldehyde, 3-methoxysalicylaldehyde (o-vanillin), 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and diamines such as o-phenylenediamine and 1,3-propylenediamine. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and elemental analysis. The structure of the complex, n-Bu2Sn(Vanophen), was determined using single crystal X-ray diffraction. The tin atom has a distorted octahedral coordination, with the Vanophen ligand occupying the four equatorial positions and the n-butyl groups in the trans axial positions. Six-coordinated distorted octahedral structures have been proposed for all diorganotin(IV) complexes studied here, as they possess similar spectroscopic data.  相似文献   

8.
The Schiff bases H2La, H2Lb, and H2Lc have been prepared from the reaction of 2-amino-4-chlorophenol with acetylacetone, benzoylacetone, and dibenzoylmethane, respectively. Organotin(IV) complexes [SnPh2(La)] (1), [SnPh2(Lb)] (2), [SnPh2(Lc)] (3), and [SnMe2(Lc)] (4) have been synthesized from the reaction of SnPh2Cl2 and SnMe2Cl2 with these Schiff bases. The synthesized complexes have been characterized by elemental analysis and FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. Spectroscopic data suggest the Schiff bases are completely deprotonated and coordinated tridentate to tin via imine nitrogen and phenolic and enolic oxygen atoms; the coordination number of tin is five. Thermal decomposition of the complexes has been studied by thermogravimetry. The in vitro antibacterial activities of the Schiff bases and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. H2La, H2Lc, and all complexes exhibited good activities and have potential as drugs.  相似文献   

9.
Four new complexes, [Ph3Sn(isopropylACDA)] (1), [Ph2SnCl(isopropylACDA)] (2), [Ph3Sn(secbutylACDA)] (3), and [Ph2SnCl(secbutylACDA)] (4), have been prepared from reaction between N-alkylated 2-amino-1-cyclopentene-1-carbodithioic acids (ACDA) with Ph2SnCl2 and Ph3SnCl in 1:1 ratio. All complexes are characterized by FTIR, multinuclear NMR (1H, 13C, and 119Sn) and mass spectrometry. In all complexes, the S–H proton has been removed and coordination takes place through the carbodithioate moiety. The 119Sn NMR data are consistent with five coordination of tin atom in solution. Complexes 2, 3, and 4 have also been confirmed by single X-ray crystallography. All three crystals are triclinic with space group P − 1. In complexes 2 and 4, the geometry around tin atom is distorted trigonal bipyramidal while in 3 the geometry is in between distorted tetrahedral and trigonal bipyramid. In all three structures, ligands are asymmetrically coordinated to tin atom. In addition, crystal structures are further stabilized by N–H···S hydrogen bonding.  相似文献   

10.
The formation constants of some oxovanadium(IV) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline and with its derivatives were determined spectophotometrically. The synthesized compounds were characterized by analytical and different physico-chemical techniques like 1H NMR, IR, elemental analysis, mass and UV-Vis spectral studies. The IR spectra affirm that coordination takes place through azomethine nitrogen and phenolate oxygen. Three of the VO(IV) Schiff base complexes i.e. bis(salicylideneaniline)oxovanadium(IV), [VO(L1)2], bis(salicylidene-4-methoxyaniline) oxovanadium (IV), [VO(L2)2] and bis(salicylidene-4-cyanoaniline)oxovanadium(IV), [VO(L10)2], were studied by thermogravimetry in order to evaluate their thermal stability and thermal decomposition pathways. The number of steps and, in particular, the starting temperature of decomposition of these complexes depends on the equatorial ligand. The complexes screened for antioxidant activity and the ab initio calculations were carried out to determine the structural and the geometrical properties of a typical vanadyl salicylideneaniline complex, [VO(L1)2].  相似文献   

11.
The synthesis of trinuclear Sn(IV) complexes 5ah – prepared in a one-pot reaction of 2-amino-4-R-phenol (R=H, Me, Cl, NO2), 2-pyridine-carboxaldehyde, 1,3,5-benzenetricarboxylic acid (trimesic acid, H3BTC), and dibutyl and dioctyltin oxides – is described. These compounds were characterized by elemental analysis, mass spectrometry, IR, and multinuclear NMR spectroscopy. The structures of 5a and 5b were also determined by single-crystal X-ray analysis. The trinuclear tin system is formed by bridges through the carboxylate moieties. The metal centers are seven-coordinate and the coordination polyhedron of tin can be depicted as distorted pentagonal-bipyramidal (PBP), where the equatorial plane consists of three oxygens and two nitrogens and the organic groups occupy the axial positions. The work presented here combines the useful properties of Schiff bases and H3BTC ligands in the formation of organotin(IV) complexes, and investigates the likely antioxidant (DPPH and TBARS) and anti-inflammatory activity (TPA) of the new substances.  相似文献   

12.
Novel heteroscorpionate-containing tin and organotin(IV) complexes, [SnRnX3 − n(L)], R = Me, Bun, Ph, or cy; X = Cl, Br or I, n = 0, 1, 2 or 3; L = bis(pyrazol-1-yl)acetate (bpza) or bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), have been synthesized and characterized by spectral (IR, 1H, 13C and 119Sn NMR, 119mSn Mössbauer) and analytical data. In [SnI3(bdmpza)], the ligand is fac-N,N′,O-tridentate, the three iodine atoms thus also fac about the six-coordinate tin(IV) atom. Neutral bpzaH reacts with BunSnCl3, PhSnCl3 and SnCl4 in Et2O in the absence of base, yielding 1:1 adducts [XSnCl3(bpzaH)] (X = R or Cl).  相似文献   

13.
Organotin(IV) Schiff base complexes of the type (L)SnR2 [where R?CH3, C6H5 or CH2CH2CO2 CH3], (LH)Sn(C6H5)3 and (L)SnCl(CH2CH2CO2 CH3) [where LH2?2-N-salicylideneimino-2-methyl-1-propanol, derived from the condensation of salicylaldehyde and 2-amino-2-methyl-1-propanol] have been prepared and characterized on the basis of their elemental analyses, IR, 1H, 13C and 119Sn NMR studies. In these mononuclear complexes the Schiff base acts either as a dianionic tridentate or as a monobasic bidentate moiety by coordinating through an alkoxy group, an azomethine nitrogen and a phenoxide ion to tin. Sulphur dioxide inserts in the tin–methyl/–phenyl bond in the above Schiff base complexes to give tin–O–sulphinates of formulae (L)RSn(SO2R) and (LH)(C6H5)2Sn(SO2C6H5).  相似文献   

14.
Reaction of tin(II) chloride and dimethyltin dichloride with Schiff bases derived from S-benzyldithiocarbazate leads to the formation of a new series of tin(II) and organotin(IV) complexes of general formula SnCl 2 .L and Me 2 SnCl 2 .L (where L = Schiff bases are derived from the condensation of S-benzyldithiocarbazate with heterocyclic aldehydes). An attempt has been made to prove the structures of the resulting complexes on the basis of elemental analysis, conductance measurements, molecular weight determinations, infrared, and multinuclear magnetic resonance ( 1 H, 13 C, and 119 Sn NMR) spectral studies. A few representative ligands and their tin complexes have also been screened for their antibacterial and antifungal activities and found to be quite active in this respect.  相似文献   

15.
《Polyhedron》1986,5(11):1853-1855
Equimolar reactions of tin (II) chloride, tin(IV) chloride or dimethyltin dichloride with macrocyclic Schiff bases lead to the formation of a new series of tin(II) and tin(IV) complexes. An attempt has been made to prove the structures of the resulting complexes on the basis of elemental analysis, conductance measurements, molecular-weight determination, and electronic, IR and multinuclear magnetic resonance (1H, 13C and 119Sn) spectral studies.  相似文献   

16.
Reactions of equimolar quantities of potassium 2-{[(2Z)-3-hydroxy-1-methyl-2-butenylidene]amino}acetate, with R n SnX4?n (R: benzyl– and n=2 or 3) in methanol yielded products of compositions LHSn(PhCH2)3 and LSn(PhCH2)2, respectively. The complexes were characterized by microanalysis, IR, NMR (1H, 13C, 119Sn) and 119mSn Mössbauer spectroscopy. A full characterization of the structure of the complex, tribenzyl{2-{[(2Z)-3-hydroxy-1-methyl-2-butenylidene]amino}acetato}tin(IV), was carried out by single crystal X-ray crystallography. The compound exists as centrosymmetric dimers in which two ligand molecules bridge the two tin centres. Each of the tin atoms in the dimeric unit is five coordinate in an approximately trigonal bipyramidal configuration, with carbon atoms in the equatorial positions and oxygen atoms arranged axially.  相似文献   

17.
Some five- and six-coordinated di- and tri-n-butyl tin(IV) complexes of the type Bu2SnL, Bu2SnL2 and Bu3SnL (where L is the anion of a monofunctional bidentate or bifunctional tridentate Schiff base) have been synthesized and characterised on the basis of microanalyses, molecular weight determinations, IR, NMR (1H, 13C, 119Sn) and 119Sn Mössbauer spectroscopy. These complexes are highly active towards bacteria.  相似文献   

18.
Some new tri- and diorganotin(IV) complexes of the general formula, R3Sn(H2L) and R′2Sn(HL) [where R = Me, n-Pr, n-Bu and Ph; R′ = Me, n-Bu, Ph and n-Oct; H3L = Schiff base (abbreviated as tren(4-Me-5-ImH)3) derived from condensation of tris(2-aminoethyl)amine (tren) and 4-methyl-5-imidazolecarboxaldehyde (4-Me-5-ImH)] have been synthesized. The coordination behaviour of Schiff base towards organotin(IV) moieties is discussed on the basis of infrared and far-infrared, 119Sn Mössbauer and multinuclear (1H, 13C and 119Sn) magnetic resonance (NMR) spectroscopic studies. Thermal studies of all of the synthesized organotin(IV) complexes have been carried out using TG, DTG and DTA techniques. The residues thus obtained from pyrolysis of the studied complexes have been characterized by X-ray powder diffraction analysis and IR. The newly synthesized complexes have been tested for their anti-inflammatory activity and toxicity (LD50).  相似文献   

19.
Two diorganotin(IV) complexes of the general formula R2Sn[Ph(O)CCH-C(Me)N-NC(O)Ph] (R=Ph, 1; R=Me, 2) have been synthesised from the corresponding diorganotin(IV) dichloride and the ligand 4-phenyl-2,4-butanedionebenzoylhydrazone(2−) (H2L), derived from benzoyl acetone and benzoyl hydrazide in methanol at room temperature in presence of triethylamine. The syntheses were performed under very mild conditions, at room temperature and without exclusion of air or moisture from the reaction vessel. Previously, rigorous conditions have been considered necessary for these species. The two compounds have been characterised by elemental analysis, IR and 1H, 13C, 15N, 119Sn NMR spectra, and their structures have been confirmed single crystal X-ray structure analysis. The central tin atom of both complexes adopts a distorted trigonal bipyramidal coordination with two ligand oxygen atoms in axial positions, the nitrogen atom of the ligand and two organic groups on tin occupying equatorial sites. 2 has crystallised with two crystallographically independent molecules in the asymmetric unit. The δ(119Sn) values for the complexes 1 and 2 are −151.5 and −146.8 ppm, respectively, thus indicating penta-coordinated tin centres.  相似文献   

20.
Diorganotin (IV) complexes (1, 2, 3, 4), of the general formula R2Sn(L)m have been synthesized where R = n-But, n-Oct; m = 2 when L1 = N-[(Z)-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carboxamide and m = 1 when L2 = [3,4-bis-{[(E)-(2-hydroxy-3-methoxyphenyl) methylidene]amino}phenyl](phenyl)meth-anone. The prepared Schiff bases and diorganotin complexes have been characterized by elemental analysis, FTIR, and NMR (1H, 13C, and 119Sn) spectroscopic studies. The molecular geometry, thermochemical values, and vibrational frequencies of two complexes in the ground state were calculated using the B3LYP density functional method with LANL2DZ basis set for Sn using Gaussian 09 software. A good correlation of theoretical and experimental results shows that in both the complexes the geometry around the central tin atom is tetrahedral. The studies were further extended to test and compare the in vitro cytotoxic activity of ligands and complexes against MCF-7 cell line by MTT assay. The IC50 values show that cytotoxic activity of ligands increased on complexation with tin metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号