共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The reaction of the metalhydrides C5R5(CO)3Mo-H (R=H (la), Me (lb) with P(NMe2)3 leads to the metal-phosphorus double-bonded species 2a,b via the intermediate formation of C5(CO)2 (Me2N)3P)Mo-H, which can only be identified spec-troscopically in solution. 相似文献
2.
3.
4.
Ulrich Abram Burkhard Schmidt‐Brücken Adelheid Hagenbach Maren Hecht Reinhard Kirmse Andreas Voigt 《无机化学与普通化学杂志》2003,629(5):838-852
Terminal ‘N3—’ ligands in rhenium and technetium nitrido complexes are sufficiently nucleophilic to react with Lewis acids under formation of nitrido‐bridged compounds. The reactivity of the nucleophilic centre and the nature of the formed compounds are strongly dependent on the Lewis acid and the composition of the metal complex used. Air‐stable compounds with Re≡N‐ER3 bridges are formed when ER3 is BR3 (R = H, Cl, Br, Ethyl, Phenyl, C6F5), BCl2Ph, GaCl3, CPh3+, or PPh3. The six‐co‐ordinate rhenium(V) complexes [ReNX2(PMe2Ph)3] (X = Cl, Br), [ReN(X)(Et2dtc)(PMe2Ph)2] (Et2dtc— = diethyldithiocarbamate) and [ReN(Et2dtc)2(PMe2Ph)] have been proved to be excellent starting materials for this type of reactions, whereas the five‐co‐ordinate precursors [ReNCl2(PPh3)2], [ReN(Et2dtc)2], [ReN{Ph2P(S)NP(S)Ph2}2] or [ReNCl4]— only react with the most reactive Lewis bases of the examples mentioned above such as BCl2Ph or B(C6F5)3. The rhenium‐nitrido bond lengths remain almost unchanged by the adduct formation, whereas a significant decrease of the trans‐influence of the nitrido complexes has been observed as can be seen by a shortening of the corresponding bond lengths or dimerization of five‐co‐ordinate precursors. Electrophilic attack of the Lewis acid to a donor atom of the equatorial co‐ordination sphere of the rhenium complex results in the formation of ‘underco‐ordinate’ metal centres which resemble to di‐, tri or tetrameric units with asymmetric nitrido bridges between each two rhenium atoms. EPR spectroscopy is an excellent tool to reflect the formation of nitrido bridges at the paramagnetic (d1) [ReNX4]— core (X = F, Cl, Br, NCS). The spectral parameters derived for the products of reactions of [ReNCl4]— with various boron compounds indicate an increase of the covalency of the equatorial Re‐L bonds as a consequence of the formation of a nitrido bridge. The tendency for the formation of nitrido bridges with Lewis acids is significantly lower for technetium compounds compared to their rhenium analogues. Only a few examples with BH3 and BPhCl2 have been established. 相似文献
5.
6.
Two families of organometallic polymers built upon the bimetallic M2(dppm)2L(2)2+ fragments (M = Pd, Pt; dppm = bis(diphenylphosphino)methane, L = 1,4-diisocyano-2,3,5,6-tetramethylbenzene (diiso), 1,8-diisocyano-p-menthane (dmb), 1-isocyano-2,6-dimethylbenzene, 1-isocyano-4-isopropylbenzene, and tert-butylisocyanide) were synthesized and fully characterized (1H and 31P NMR, X-ray crystallography (model compounds), IR, Raman, chem. anal., TGA, DSC, powder XRD, 31P NMR T1 and NOE, light scattering, and conductivity measurements). Evidence for polymers in the solid state is provided from the swelling of the polymers upon dissolution and the formation of stand-alone films. However, these species become small oligomers when dissolved. The materials are luminescent in the solid state at 298 and 77 K and in PrCN solution at 77 K. These emissions result from triplet 3(d sigma d sigma*) states despite the presence of low-lying pi-pi* MO levels according to DFT calculations for the aryl isocyanide model compounds. The emission band maxima are located between 640 and 750 nm and exhibit lifetimes of 3-6 ns for the Pd species and 3-4 micros for the Pt analogues in PrCN solution at 77 K. No evidence of intramolecular excitonic photoprocesses was found in any of the polymers. 相似文献
7.
Silanediyldiphosphinite tBu2Si(OPPh2)2 1 has been synthesised. 1 reacts with the norbornadiene complexes C7H8M(CO)4 (M = Cr, Mo, W) to give six-membered chelate rings of the type cis-M(CO)4[tBu2Si(OPPh2)2] 2–4 . The crystal structures of the chromium and molybdenum complexes cis-Cr(CO)4[tBu2Si(OPPh2)2] 2 and cis-Mo(CO)4[tBu2Si(OPPh2)2] 3 have been determined. Both complexes crystallise in the triclinic system (space group P1 ) with unit cell parameters: ( 2 ) a = 1 093(3) pm, b = 1 477(5) pm and c = 1 542(5) pm; α = 108.4(2)°, b? = 103.87(11)° and b? = 104.57(10)°; U = 2.143(12) nm3; Z = 2; ( 3 ) a = 1 097.8(2) pm, b = 1 483.7(2) pm and c = 1 554.3(2) pm; α = 108.10(1)°, b? = 103.956(6)° and γ = 104.213(7)°; U = 2.1899(6) nm3; Z = 2. Both 2 and 3 consist of discrete, slightly distorted, octahedral monomers in which the six-membered chelate rings are essentially planar. In contrast, the conformations of the chelate rings found in crystal structures of analogous complexes vary from twist-boat to “chaise longue”. 相似文献
8.
Alvarez MA García ME Martínez ME Ramos A Ruiz MA Sáez D Vaissermann J 《Inorganic chemistry》2006,45(17):6965-6978
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer. 相似文献
9.
The catalytic activation of carbon dioxide by metals and non-metals is one of the attractive scientific challenges in scientific community. In this work, the conversion mechanisms of CO2 to CO by B, Al and Si were elucidated extensively at the B3LYP/6-311++G(d,p) basis set level. Our theoretical mode testifies that the reaction mechanisms of these three systems are significantly different from each other, and both boron and silicon have good performance in the conversion of CO2 to CO. 相似文献
10.
Quantum mechanical ab initio calculations at the MP2 and CCSD(T) level of theory have been used to investigate the geometries and bond energies of the complexes M(CO)6–x(H2)x (M = Cr, Mo, W; x = 1, 2, 3). The theoretically predicted M(CO)5–(H2) bond dissociation energies are in excellent agreement with experimental values. The M–(H2) dissociation energies of the bis- and tris-dihydrogen complexes are very similar to the values for the mono-dihydrogen complexes. In M(CO)5(H2) the dihydrogen ligand prefers an eclipsed conformation relative to the equatorial carbonyl groups. For M(CO)4(H2)2 the cis and trans isomers are nearly equal in energy for M = W, while a cis configuration is favoured for M = Cr. For M(CO)3(H2)3 the facial configurations are more stable than the meridial structures for all three metals M. The charge decomposition analysis (CDA) classifies dihydrogen as a donor ligand with moderate acceptor properties. In trans-M(CO)4(H2)2 back donation is increased and the M–(H2) bonds are stronger than in M(CO)5–(H2). Back donation in M(CO)3(H2)3 is slightly weaker than in the mono-dihydrogen complexes M(CO)5(H2). 相似文献
11.
Sodium Oxonitridometallates(VI) of Molybdenum and Tungsten, Na4MO2N2 (M = Mo, W) MoO3 as well as WO3 react with an excess of NaNH2 in autoclaves at temperatures ranging from 250°C to 750°C to yield – in contrast to Ta2O5 [1] – oxonitridometallates of general composition Na4MX4 and other products like Na5WO4N [2]. The compounds decompose in moist air within minutes to Na2WO4, Na2MoO4 and Na2MoO4 · xH2O, respectively. The structures of the Na4MX4 phases were determined from single crystal X-ray diffraction data. They crystallize triclinic in the Na4CoO4-type structure [3] P1 , Z = 2 with the following cell constants: 相似文献
12.
Michael I. Bruce Ernst Horn Janis G. Matisons Michael R. Snow 《Journal of organometallic chemistry》1985,286(2):271-287
The reactions of Os3(μ-H)2(CO)10 with a series of Group IB metal acetylide-tertiary phosphine complexes are described. Whereas the compounds M(C2C6F5)(PPh3) (M = Cu, Ag, Au) afforded the complexes MOs3(μ-CHCHC6F5)(CO)10(PPh3) cleanly and in high yield, complex mixtures of products were obtained from reactions of the analogous phenylacetylides. The complexes MOs3(μ-CHCHPh)(CO)10(PPh3), MOs3(μ-CHCHPh)(CO)9(PPh3)2 and MOs3(μ-H)(CO)10(PPh3) (of known structure), and MOs3(μ-CHCHPh)(CO)9(PPh3)2 and HMOs3(CHCPh)(CO)8 (of unknown structure) were characterised; Au(C2Ph)(PMe3) afforded similar derivatives. The reactions proceed by oxidative-addition and hydrogen migration steps; MP bond cleavage reactions also occur to a small extent. The molecular structures of AuOs3(μ-CHCHC6R5)(CO)10(PPh3) (R = F or H) were determined by X-ray analyses. For R = F, crystals are triclinic, space group P with a 9.081(2), b 13.291(2), c 17.419(2) Å, α 84.49(1), β 76.20(2), γ 75.81(2)° and Z = 2; 4622 observed data [I > 2.5σ(I)] were refined to R = 0.027, RW = 0.031. For R = H, crystals are triclinic, space group P, with a 9.403(4), b 13.448(3), c 13.774(4) Å, α 83.34(2), β 88.66(3), γ 70.21(3)°, and Z = 2; 4405 observed data [I > 2.5σ(I)] were refined to R = 0.030, RW = 0.033. The two molecules differ in the orientation of the Ph rings of the PPh3 groups, but are otherwise similar to Os3(μ-H)(μ-CHCHBut)(CO)10 with the μ-H ligand replaced by the isolobal μ-Au(PPh3) group. 相似文献
13.
The influences of R, the alpha-diimine, and the transition metal M on the excited-state properties of the complexes [M(SnR3)2(CO)2(alpha-diimine)] (M = Ru, Os; R = Ph, Me) have been investigated. Various synthetic routes were used to prepare the complexes, which all possess an intense sigma-bond-to-ligand charge-transfer transition in the visible region between a sigma(Sn-M-Sn) and a pi*(alpha-diimine) orbital. The resonance Raman spectra show that many bonds are only weakly affected by this transition. The room-temperature time-resolved absorption spectra of [M(SnR3)2(CO)2(dmb)] (M = Ru, Os; R = Me, Ph; dmb = 4,4'-dimethyl-2,2'-bipyridine) show the absorptions of the radical anion of dmb, in line with the SBLCT character of the lowest excited state. The excited-state lifetimes at room temperature vary between 0.5 and 3.6 microseconds and are mainly determined by the photolability of the complexes. All complexes are photostable in a glass at 80 K, under which conditions they emit with very long lifetimes. The extremely long emission lifetimes (e.g., tau = 1.1 ms for [Ru(SnPh3)2(CO)2(dmb)]) are about a thousand times longer than those of the 3MLCT states of the [Ru(Cl)(Me)(CO)2(alpha-diimine)] complexes. This is due to the weak distortion of the former complexes in their 3SBLCT states as seen from the very small Stokes shifts. Remarkably, replacement of Ru by Os hardly influences the absorption and emission energies of these complexes; yet the emission lifetime is shortened because of an increase of spin-orbit coupling. The quantum yield of emission at 80 K is 1-5% for these complexes, which is lower than might be expected on the basis of their slow nonradiative decay. 相似文献
14.
Weber L Meyer M Stammler HG Neumann B 《Chemistry (Weinheim an der Bergstrasse, Germany)》2001,7(24):5401-5408
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles. 相似文献
15.
The reactions of the substituted Group VI metal carbonyls of the type M(CO)4(2-Mepy)2 (M = Mo, w) and M(CO)3(L)3 (L = py, M = Mo, W; L = NH3, M = Mo) with mercuric derivatives HgX2 (X = Cl, CN, SCN) have given rise to three series of tricarbonyl complexes: M(CO)3(py)HgCl2 · 1/2HgCl2 (M = Mo, W); 2[M(CO)3(L)]Hg(CN)·nHg(CN)x (L = py, M = Mo, W, n = , × = 2; L = 2- Mepy, × = 1; M = Mo, n = 3; M = W, n = 1); and [M(CO)3(L)Hg(SCN)2 · nHg(SCN)2] (L = py, M = Mo,W, n = 0; L = 2-Mepy, M = Mo, W, n = ; L = NH3, M = Mo, n = 0) depending on which mercuric compound is employed. All the reactions with Hg(SCN)2 give isolable products whereas those with Hg(CN)2 and HgCl2 did so far only the reactions with [M(CO)4(2-Mepy)2] and M(CO)3(py)3. The greater reactivity of Hg(SCN)2 than of Hg(CN)2 and HgCl2 is consistent with the various acceptor capacities of the groups bonded to the mercury atom.The reactions studied always involve displacement of the N-donor ligand of the original complex and partial or total displacement of the halide or pseudohalide groups of the mercury compound to give in all cases compounds containing MHg bonds. In addition, elimination of a CO group in the tetracarbonyl complexes M(CO)4(2-Mepy)2occurs. 相似文献
16.
Carbamoyl complexes, (CO)4Re(NH2R)(CONHR)(R = ethyl, 1; R = allyl, 2; R = isopropyl, 3) were prepared by reactions of (CO)5ReBr (or (CO)5ReCH2SiMe3) with appropriate amines. Complexes 1, 2 and 3 reacted with CH3CH2COCl to give Re(CO)5(NH2R)+Cl? (R = ethyl, 4; R = allyl, 5; R - isopropyl, 6). Complex 5 undergoes nucleophilic attack by KOMe to give the alkoxycarbonyl complexes (CO)4Re(NH2-Allyl)(COOMe), 7. Complexes 4, 5, 6 and 7 were transformed to the corresponding carbamoyl complexes by reacting with appropriate amines. The reactions between the carbamoyl complexes and R″OH/CHCl3 in air at room temperature gave the proposed products [(CO)4Re(NH2R)]2O (R = allyl, 8; R = isopropyl, 9), respectively. Complex 8 can also be prepared by heating 7 in CDCl3 at 63–68°C for several days. The structure of 1 was confirmed by a X-ray crystallographic study. Crystallographic data: space group P21/c, a = 8.193 (3) Å, b = 19.273 (3) Å, c = 9.348 (8) Å, β = 110.37 (4)°, V = 1383.68 Å3, Z = 4; R(F) = 0.027, Rw(F) = 0.030, based on 1888 reflections with I > 2.5σ(I). The other complexes were characterized by 1H NMR, 13CNMR, IR and mass spectra. 相似文献
17.
18.
F.Albert Cotton Donald J. Darensbourg Brian W.S. Kolthammer 《Journal of organometallic chemistry》1981,217(1):C14-C16
The reactions of M2Cl4(PR3)4 derivatives (M Mo, W and PR3 PEt3, PBu3n) with CO at atmospheric pressure in toluene at 70°C to afford M(CO)3(PR3)2Cl2 and trans-M(CO)4(PR3)2 are reported. 相似文献
19.
Novel Transition‐Metal (M=Cr,Mo, W,Fe) Carbonyl Complexes with Bis(guanidinato)silicon(II) Ligands 下载免费PDF全文
Felix M. Mück Dorit Kloß Johannes A. Baus Dr. Christian Burschka Prof. Dr. Reinhold Tacke 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(31):9620-9626
The donor‐stabilized silylene 2 (the first bis(guanidinato)silicon(II ) complex) reacts with the transition‐metal carbonyl complexes [M(CO)6] (M=Cr, Mo, W) to form the respective silylene complexes 7 – 10 . In the reactions with [M(CO)6] (M=Cr, Mo, W), the bis(guanidinato)silicon(II ) complex 2 behaves totally different compared with the analogous bis(amidinato)silicon(II ) complex 1 , which reacts with [M(CO)6] as a nucleophile to replace only one of the six carbonyl groups. In contrast, the reaction of 2 leads to the novel spirocyclic compounds 7 – 9 that contain a four‐membered SiN2C ring and a five‐membered MSiN2C ring with a M?Si and M?N bond (nucleophilic substitution of two carbonyl groups). Compounds 7 – 10 were characterized by elemental analyses (C, H, N), crystal structure analyses, and NMR spectroscopic studies in the solid state and in solution. 相似文献
20.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(46):14874-14879
N ‐Methylation of methyl 5‐hydroxynicotinate followed by reaction with a diene in the presence of triethylamine afforded (4+3) cycloadducts in good to excellent yields. High regioselectivity was observed with 1‐substituted and 1,2‐disubstituted butadienes. Density functional theory calculations indicate that the cycloaddition involves concerted addition of the diene onto the oxidopyridinium ion. The process provides rapid access to bicyclic nitrogenous structures resembling natural alkaloids. 相似文献