首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The cyclo-tetraphosphates of the MII 2-xCaxP4O12 type (MIII = Mg, Cd) have been synthetized as new binary compounds, and their existence for x ε (0; 1 > (Mg) or for x ε (0; 0.7 > (Cd) has been proved. The synthesis is based on a two-step thermal process. The first step starts from pure cyclo-tetraphosphates of the two divalent metals and Ca(PO3)2 which are melted in normal atmosphere and then abruptly cooled to give a vitreous amorphous product composed of higher linear phosphates of the summary formula (MII 2-x Cax)n/4H2PnO3n+1 · In the second step, this product is repeatedly heated to a suitable temperature and recrystallized to give microcrystalline product MII 2-x CaxP4O12 · The colourless (white) products crystallize in the monoclinic aystem, C2c group. Their structural parameters have the values for Mg2-x CaxP4O12: a = 11.749(5) to 12.063(4) Å, b = 8.278(4) to 8.635(4) Å c = 9.905(4) to 9.875(3) Å and β = 118.92(2)° to 118.03(2)°; or for Cd2-x CaxP4O12: a = 12.328(4) to 12.457(5) Å b = 8.639(3) to 8.732(4) Å c = 10.388(3) to 10.443(4) Å and β = 119.33(2)° to 119.45(2)°.  相似文献   

2.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXI. (Mg1–xCrx)2P2O7, CaCrP2O7, SrCrP2O7 and BaCrP2O7 – New Diphosphates of Divalent Chromium In the quasi‐binary systems A2P2O7/Cr2P2O7 (A = Mg, Ca, Sr, Ba) the solid solution (Mg1–xCrx)2P2O7 as well as the new compounds CaCrP2O7, SrCrP2O7, and BaCrP2O7 have been synthesized and characterized for the first time. In the whole experimental range (0.01 < x < 0.94; T = 950 °C) the solid solution (Mg1–xCrx)2P2O7 is isotypic to the pure phases β‐Mg2P2O7 and β‐Cr2P2O7; but no phase transition (β → α) to a low‐temperature modification, as in Mg2P2O7 and Cr2P2O7, was found. CaCrP2O7 ( A ), SrCrP2O7 ( B ), and BaCrP2O7 ( C ), phases without detectable homogenity range in the other quasi‐binary systems are not structurally related to each other, but are isotypic to the corresponding compounds containing cobalt. [( A ): P‐1, Z = 2, a = 6.312(2) Å, b = 6.499(2) Å, c = 6.916(2) Å, α = 83.12(3)°, β = 88.37(3)°, γ = 67.72(3)°, 3235 independent reflections, R1 = 0.041, wR2 = 0.112; ( C ): P‐1, Z = 2, a = 5.382(8) Å, b = 7.271(8) Å, c = 7.589(4) Å, α = 103.33(7)°, β = 89.91(9)°, γ = 93.6(1)°, 1571 independent reflections, R1 = 0.085, wR2 = 0.31]. We have reported earlier details on SrCrP2O7. The coordination of Cr2+ by oxygen is distorted octahedral in ( A) , while in the structures of ( B) and ( C) square‐pyramidal environment is found. The results of UV/VIS‐spectroscopic and magnetic measurements as well as IR‐spectra of the diphosphates are reported.  相似文献   

3.
Crystal Structure of Lead Cyclotetraphosphate-2-Hydrate, Pb2P4O12 · 2H2O By heating of Pb2P4O12 · 4 H2O crystals at 100°C, Pb2P4O12 · 2 H2O is formed topotactically. The triclinic crystals are twinned on (010). Space group: P1 , unit cell: a = 8.02 ± 0.02, b = 10.58 ± 0.02, c = 7.53 ± 0.02 Å, α = 98.8 ± 0.2, β = 108.7 ± 0.2, γ = 82.6 ± 0.3°. The crystal structure was determined by Patterson and Fourier methods and refined by least-squares calculations. The structure consists of two crystallographically different P4O124? ring anions, point symmetry 1 , connected by Pb and hydrogen bonds. Both Pb atoms are coordinated by eight oxygen atoms. The polyhedra of either Pb are interconnected by common edges forming sheets and chains. Pb(1) is joined with four, Pb(2) with five P4O124? anions.  相似文献   

4.
Contributions on the Bonding Behaviour of Oxygen in Inorganic Solids. III [1] Mn2P2O7, Mn2P4O12 und Mn2Si(P2O7)2 — Crystal Growth, Structure Refinements and Electronic Spectra of Manganese(II) Phosphates By chemical vapour transport reactions in a temperature gradient single crystals of Mn2P2O7 (1050 → 950 °C) and Mn2P4O12 (850 → 750 °C) have been obtained using P/I mixtures as transport agent. Mn2Si(P2O7)2 was crystallized by isothermal heating (850 °C, 8d; NH4Cl as mineralizer) of Mn2P4O12 und SiO2. In Mn2Si(P2O7)2 [C 2/c, a = 17.072(1)Å, b = 5.0450(4)Å, c = 12.3880(9)Å, β = 103.55(9)°, 1052 independent reflections, 97 variables, R1 = 0.023, wR2 = 0.061] the Mn2+ ions show compressed octahedral coordination (d¯Mn—O = 2.19Å). The mean distance d¯Mn—O = 2.18Å was found for the radially distorted octahedra [MnO6] in Mn2P4O12 [C 2/c, Z = 4, a = 12.065(1)Å, b = 8.468(1)Å, c = 10.170(1)Å, β = 119.29(1)°, 2811 independent reflections, 85 variables, R1 = 0.025, wR2 = 0.072]. Powder reflectance spectra of the three pink coloured manganese(II) phosphates have been measured. The spectra show clearly the influence of the low‐symmetry ligand fields around Mn2+. Observed d—d electronic transition energies and the results of calculations within the framework of the angular overlap model (AOM) are in good agreement. Bonding parameters for the manganese‐oxygen interaction in [Mn2+O6] chromophors as obtained from the AOM treatment (B, C, Trees correction α, eσ, eπ) are discussed.  相似文献   

5.
New Oxocuprates(I). On Cs3Cu5O4, Rb2KCu5O4, RbK2Cu5O4 and K3Cu5O4 Cs3Cu5O4 light yellow, powder as well as single crystals [a = 10.313(9), b = 7.630(1), c = 14.750(4) Å, β = 106.48(6)°], Rb2KCu5O4 [a = 9.724(2), b = 7.443(0), c = 14.246(2) Å, β = 106.78(8)°], RbK2Cu5O4 [a = 9.561(1), b = 7.411(0), c = 14.111(1) Å, β = 106.76(7)°] and K3Cu5O4 [a = 9.422(1), b = 7.364(1), c = 13.995(2) Å, β = 107.00(2)°] are new prepared. The colour of the powders becomes lighter according to the sequence showed above. K3Cu5O4 shows pale yellow. The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

6.
Synthesis, Crystal Structure, and Properties of Copper(II) Ultraphosphate CuP4O11 CuP4O11 was synthesised from Cu2P4O12 and P4O10 (500°C, sealed silica ampoules) using iodine and a few mg of CuP2 or phosphorus as mineraliser. Chemical transport reactions in a temperature gradient 600 → 500°C led to the formation of well developed, colourless, transparent crystals with edge-lengths up to 5 mm (deposition rate m ≈? 2 mg/h). The crystal structure of copper(II) ultraphosphate (C1 ; Z = 8; a = 13.084(3) Å, b = 13.024(2) Å, c = 10.533(2) Å, α = 89.28(2)°, β = 118.42(2)°, γ = 90.30(2)°) has been determined and refined from X-ray data obtained from a pseudo-merohedrally twinned crystal (twin element two-fold rotation axis // b; volume ratio: 17/3; 3063 independent reflections with 2θ ? 53.4°; 291 variables; conventional residual (based on F) R1 = 0.038, wR2 = 0.101 (based on F2), GooF = 1.10). The crystal structure of CuP4O11 is built from four crystallographically independent ten-membered polyphosphate rings of very similar conformation. These rings are linked to form two-dimensional nets parallel (?2 0 1) planes. There is a close topological relationship between these nets and those formed in polyphosphides CdP4 and CuP2. Copper on two crystallographic sites (Cu2P8O22) is coordinated by oxygen thus forming elongated [CuO6] octahedra (deq(Cu? O) ≈? 1.96 Å; dax(Cu? O) ≈? 2.34 Å). The crystal g-tensor of CuP4O11 has been determined from powder samples to g1 = 2.09, g2 = 2.24, g3 = 2.36. These values are in good agreement with molecular g-values from calculations within the framework of the angular overlap model on the two independent CuO6 octahedra (Cu2+(1): gx = 2.09, gy = 2.10, gz = 2.52; Cu2+(2): gx = 2.08, gy = 2.11, gz = 2.52) assuming exchange coupling. The observed broad absorption band (7000 cm?1 to 13000 cm?1) from powder reflectance measurements (4000–28000 cm?1) and the bulk magnetic susceptibility of μexp = 1.99 μB is also reproduced nicely by this calculations.  相似文献   

7.
Ca2[P4O12] · 4 H2O crystallizes in the monoclinic space group P21/n, a = 7.668, b = 12.895, c = 7.144 Å, β 107.00°, Dx = 2.28 g · cm?3, Z = 2. In the structure there are ringlike anions, which are composed of 4 PO4 tetrahedra connected by oxygen bridges. The Ca2+ are surrounded by 7 oxygen atoms. Each two cation polyhedra are connected by a common edge to pairs which are isolated from one another. The water molecules form hydrogen bridges with one another and with the anion rings.  相似文献   

8.
Crystal Structure of Lead Cyclotetraphosphate-4-Hydrate, Pb2P4O12·4 H2O Pb2P4O12·4 H2O is the starting product of a series of solid state reactions with the final product cyclooctaphosphate. Pb2P4O12·4 H2O crystallizes in the monoclinic space group P21/n, with a = 8.07 ± 0.02, b = 11.76 ± 0.03, c = 7.50 ± 0.02 Å and β = 108.2 ± 0.3°. The crystal structure has been solved by Patterson and Fourier methods and refined by least squares calculations to an R-index of 0.07. The structure consists of P40124? ringanions, which are connected by Pb and hydrogen bonds. Lead is coordinated by eight oxygen atoms.  相似文献   

9.
Single crystals of the first anhydrous thallium nickel phosphates were prepared by reaction of heterogeneous Tl/Ni/P alloys with oxygen. TlNi4(PO4)3 (pale‐yellow, orthorhombic, space group Cmc21, a = 6.441(2)Å, b = 16.410(4)Å, c = 9.624(2)Å, Z = 4) crystallizes with a structure closely related to that of NaNi4(PO4)3. Tl4Ni7(PO4)6 (yellow‐brown, monoclinic, space group Cm, a = 10.711(1)Å, b = 14.275(2)Å, c = 6.688(2)Å, β = 103.50(2)°, Z = 8) is isotypic with Na4Ni7(PO4)6, and Tl2Ni4(P2O7)(PO4)2 (brown, monoclinic, space group C2/c, a = 10.389(2)Å, b = 13.888(16)Å, c = 18.198(3)Å, β = 103.1(2)°, Z = 8) adopts the K2Ni4(P2O7)(PO4)2 structure. Tl2Ni4(P2O7)(PO4)2 could also be prepared in nearly single phase form by reaction of Tl2CO3, NiO, and (NH4)2HPO4.  相似文献   

10.
Synthesis and Crystal Structure Determination of Pb2P4O12 · 3 H2O Pb2P4O12 · 3 H2O precipitates at mixing aqueous solutions of Pb(NO3)2 and Na4P4O12 (25°C). Crystal growth was achieved by applying gel-techniques (Agar-Agar-gel). The crystal structure (P1 , a = 786.4(3), b = 914.4(3), c = 1021.6(3) pm, α = 97.42(2)°, β = 100.63(2)°, γ = 114.92(2)°; Z = 2; 4160 unique diffractometer data, R = 0.05) contains cyclo-tetraphosphate anions with point symmetry D2d. Lead is coordinated by eight oxygen, the polyhedra deriving from a square antiprism.  相似文献   

11.
Abstract

The hydrated salts of the acid H6P6O12, Rb6P6O·aq and M3P6O12·aq (M = Ca, Sr, Ba), that have so far been unknown, have been prepared and studied by X-ray methods, thermal analysis and molecular spectroscopy. It has been found that the anion structure exhibits a chair form with the D3d symmetry. All the salts are stable at laboratory temperature and are completely decomposed on prolonged heating to 80°C prior to complete dehydration. The newly prepared salts of the acid H4P4O10 involve Cs4P4010·1.5 H2O, Tl4P4O10, M2P4O10·x H2O (M = Cu, Ni, Co; x = 10, 2, 6, respectively), Na2MP4O10·x H2O (M = Cu, Ni, Co; x = 8, 8, 4, respectively). They have been studied using X-ray methods, thermal analysis, molecular and reflectance spectra and the magnetic susceptibility. The dehydration of the salts starts at 30 to 40°C and ends by complete decomposition before the completion of dehydration at 150°C. The anion structure for the salt CS4P4O10 in the crystalline state has a chair form with C2 symmetry. However, the anion structure in aqueous solutions approaches a planar arrangement with the D2h symmetry.  相似文献   

12.
Improved Syntheses, Crystal Growth, and Crystal Structure Determination of P4O6S2 and P4O6S3 Syntheses and single crystal growths of the title compounds are described. Both compounds crystallize in the space group P21/c (P4O6S2: a = 11.293(4); b = 6.457(3); c = 11.588(4) Å; β = 90.29(2)°, 2 450 diffractometer data, Rw = 0.035/P4O6S3: a = 15.611(5); b = 8,303(3); c = 9.697(4) Å; β = 127.12(2)°, 2 481 diffractometer data, Rw = 0.034). The structural data for the series P4O6Sn (n = 1 – 4) thus completed are compared to their oxide analogues P4O6On (n = 1 – 4). The changes in the geometry of the P4O6-cage in course of its successive oxidation are discussed.  相似文献   

13.
The system CuO‐Fe2O3‐P2O5 has been investigated by means of the solid state reaction between CuO, Fe2O3 and (NH4)2HPO4 in quartz crucibles at 900 °C. The powder samples were characterized by X‐ray diffraction, IR spectroscopy and TG/DTA. Single crystals of a new quaternary phase Cu8Fe2P4O21 were achieved by cooling from the melt of the compound in a sealed, evacuated quartz ampoule. Cu8Fe2O5(PO4)4 crystallizes in the monoclinic space group C2/m (No 12) with a = 15.9733(8) Å, b = 5.9438(3) Å, c = 9.5530(5) Å, β = 113.76(1)°, Z = 2. The three‐dimensional framework consists of [FeO6] octahedra, three different [CuO5] polyhedra and [PO4] tetrahedra. Cu8Fe2P4O21 exhibits an incongruently melting point at 945 °C.  相似文献   

14.
Chemical, Thermoanalytical, and X-ray Investigations to the Formation of the β-Ca2[P2O7] from the Ca2[P4O12] · 4 H2O The formation of β-Ca2[P2O7] from Ca2[P4O12] · 4 H2O (modification I) proceeds crystallographically oriented in several steps: In one of these steps an X-ray amorphous phase is formed and simultaneously cyclotetraphosphate reorganizes to polyphosphate. The dehydration proceeds in 2 steps: At 120°C 3 molecules and at 220°C 1 molecule are lost, respectively. The formation of diphosphate from polyphosphate, which is connected with the loss of P2O5, takes place at 850°C according to high temperature Guinier.  相似文献   

15.
The crystal structures of chromium and indium dihydrogen triphosphates, CrH2P3O10 and InH2P3O10, in modification II are refined by the Rietveld method using X-ray powder diffraction data. The compounds crystallize in the monoclinic crystal system, space group P21/n. Z = 4, a = 7.3225(4)Å, b = 8.6835(6)Å, c = 11.6599(7) Å, and b = 102.388(3)° for CrH2P3O10, and a = 7.5332(1)Å, b = 9.0841(1)Å, c = 11.8600(1) Å, and b = 103.9596(7)° for InH2P3O10. The structures are refined in the isotropic approximation (pseudo-Voigt profile function): Rp = 4.8%, Rwp = 6.9%, RBragg = 7.5%, RF = 9.9% for CrH2P3O10; Rp = 6.3%, Rwp = 8.3%, RBragg = 6.2%, RF = 4.1% for InH2P3O10. The crystal structures of compounds in the isostructural series MIIIH2P3O10-II, where MIII = Al, Ga, Cr, V, Fe, and In, are examined and compared.  相似文献   

16.
17.
A study of the vibrational spectra and physico-chemical properties of nickel and sodium cyclotriphosphate hexahydrate, NiNa4(P3O9)2.6H2O. We have studied the dehydration and the calcination under atmospheric pressure of cyclotriphosphate hexahydrate of nickel and sodium, NiNa4(P3O9)2.6H2O, between 25 and 700°C by infrared spectrometry, X-ray diffraction, TGA and DTA thermal analyses. This study allows the identification and the crystallographic characterization of a new phase, NiNa4(PO3)6, obtained between 350 and 450°C. NiNa4(PO3)6 crystallizes in the triclinic system, P−1, with the following unit cell parameters a = 6.157(3)Å, b = 6.820(6)Å, c = 10.918(6)Å, α = 80.21(5)°, β= 97.80(9)°, γ = 113.49(3)°, V = 409.8 Å3, Z = 1, M(19) = 25 and F(19) = 48 (0.0095; 42). The calcination of NiNa4(PO3)6, between 500 and 600°C, leads to a mixture of long-chain polyphosphates NiNa(PO3)3 and NaPO3. The kinetic characteristics of the dehydration of NiNa4(P3O9)2.6H2O were determined and discussed. The vibrational spectrum of the title compound, NiNa4(P3O9)2.6H2O, was interpreted in the domain of the stretching vibrations of the P3O9 rings, on the basis of its crystalline structure and in the light of the calculation of the normal IR frequencies of the P3O9 ring with D3h symmetry.  相似文献   

18.
A novel borophosphate‐hydrate, (Ni3–xMgx)[B3P3O12(OH)6] · 6 H2O (x ≈ 1.5), has been prepared by hydrothermal synthesis (T = 170 °C) from a mixture of NiCl2 · 6 H2O, Mg(OH)2, B2O3 and H3PO4. The crystal structure was determined at 293 K from single‐crystal X‐ray diffraction data (trigonal, R3c (no. 167), a = 14.957(10) Å, c = 13.812(6) Å, V = 2676(2) Å3, Z = 6, R1 = 0.0276, wR2 = 0.0714 for 779 observed reflections with I > 2σ(I)). The crystal structure contains unbranched six‐membered rings [B3P3O12(OH)6]6– of alternating corner linked borate and phosphate tetrahedra, which are stacked along [001] and connected via MIIO2(OH)2(H2O)2 coordination polyhedra. Hydrogen bonding between the tetrahedral six‐membered rings and MIIO2(OH)2(H2O)2 octahedra leads to a further cross‐linking. With respect to the arrangement of isolated six‐membered tetrahedral rings the crystal structure of this borophosphate‐hydrate is closely related to the cyclo‐hexasilicate dioptase, Cu6[Si6O18] · 6 H2O.  相似文献   

19.
Crystal structure of zinc tetrametaphosphate octahydrate: Zn2P4O12 · 8 H2O has been solved using 1888 X-ray reflections with a final R value: 0.031. This salt is triclinic, P1 , with Z = 1 and the following unit cell dimensions: a = 8.610(5), b = 7.137(5), c = 7.108(5) Å, α = 96.09(5), β = 105.99(5), γ = 100.49(5)°. This salt is the third example of an hydrated tetrametaphosphate of a bivalent cation. The two zinc atoms are octahedrally coordinated. A complete hydrogen bond scheme is given.  相似文献   

20.

Cobalt dimethylphenylpiperazinium cyclotetraphosphate hexahydrate, Co[C12H19N2]2P4O12.6H2O, was synthesized by a reaction between cyclotetraphosphoric acid H4P4O12, cobalt carbonate, and 1-(2,4-dimethylphenylpiperazine). It crystallizes in the triclinic system, space group P, with the following unit cell parameters: a = 7.336(1), b = 8.413(1), c = 14.926(2) Å, α = 87.46(1), β = 83.13(1), γ = 82.98(1)°, V = 907.3(2) Å3, and Z = 1. The atomic arrangement can be described as layers containing P4O12 rings a and Co(H2O)6 octahedra spreading in the (001) planes between which are located the dimethylphenylpiperazinium groups via H-bonds. The synthesis and characterization by X-ray diffraction, IR absorption, and thermal analysis are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号