首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An attempt is made to analyze the relationship between salt rejection and water flux of nonionic polymer membranes in reverse osmosis on the basis of the movement of water in the membranes. The salt rejection Rs is a consequence of transport depletion of salt in relation to water flux. The transport depletion can be quantitatively expressed through knowledge of the mode of water transport and by application of free-volume theory to membrane transport phenomena. Water permeation can be characterized by a parameter ω = RTK1/P1v1, K1 denoting hydraulic permeability, P1 diffusive water permeability, v1 the molar volume of water. Thus polymer membranes can be classified in three categories: ω = 1 (diffusion membranes); ω > 1 (diffusion-flow membranes); and ω ? 1 (flow membranes). Salt rejection Rs can be expressed in terms of P1, the diffusive salt permeability P2, and the effective pressure (Δp ? Δπ): Experimental results obtained with various hydrophilic polymers are presented as the dependence of Rs on the logarithm of water flux. Good agreement was found between the experimental data and the calculated curve. Excessive swelling of membranes results in bulk flow of water (high ω) with coupled transport of salt. Hence the salt rejection decreases quickly as water flux in creases beyond a threshold value above which water flux can be characterized as bulk flow.  相似文献   

2.
Throughout this study, the effect of certain organic acids, methacrylic acid, lactic acid and tartaric acid, doped in polysulfone (PSF) casting solution onto the performance of nanofiltration (NF) membranes was investigated. Different NF membranes have been prepared from m-phenylenediamine and trimesoylchloride onto the top surface of the acid-modified PSF membranes through regulating the concentration and contact time of the conventional interfacial polymerization process. The study of scanning electron microscopy (SEM) was used to investigate the influence of acids on the morphology of membranes and cross-sectional structures. The functional groups, hydroxyl and carboxylic acid, of the acids have resulted in a significant increase in membrane thickness, porosity and hydrophilicity, with a decrease in macrovoid capacity of the PSF layer. The acid-modified PSF/TFC membranes showed higher rejection of salt, with an increment in water flux compared to the neat membrane. Water flux and salt rejection (Rs %) of the control membrane was 7.6 L/m2 h and 65.4%, whereas polysulfone/methacrylic acid (PSF/MAAc), polysulfone/tartaric acid (PSF/TAc), and polysulfone/lactic acid (PSF/LAc) were 16.8, 18.5, and 20.2 L/m2 h and 88, 88.2 and 94.1%, respectively. Efficiency of prepared NF membranes under various inlet pressures and specific salts was investigated with selectivity and salt rejection. The salt rejection of a mixed salt solution was found to meet the order of Rs % CaSO4 ≥ Rs % Na2SO4 ˃ Rs % MgSO4 ˃ Rs MgCl2 ˃ Rs % NaCl.  相似文献   

3.
The kinetics of alkaline hydrolysis of tris(1,10–phenanthroline)iron(II) has been studied in the presence of nonionic and mixed nonionic–ionic micellar media at 308 K. The effects of mixed-micellar environments of nonionic with ionic surfactants (C12E23/ATABs and C12E23/SDS) on the hydrolytic rate have been studied. The rate decreases monotonically with an increment of [C12E23]T (total Brij 35 concentration) at constant [?OH]0 and has been discussed with the pseudo-phase micellar model. The rate also decreases with [C12E23]T at a continuous addition of ionic surfactants (ATABs and SDS). The observed rate constant kobs follows the empirical relation: kobs = (k0 + θK [C12E23]T)/(1 + K [C12E23]T) (where θ and K are empirical constants). The values of θ remain unaffected, whereas K decreases nonlinearly with [ATABs]T in a mixed C12E23?ATAB micellar system. But the kobs in a mixed C12E23–SDS micellar system is much lower than that of the C12E23–ATAB system and do not comply with any micellar kinetic models.  相似文献   

4.
An improved equivalent circuit model is proposed for a piezoelectric crystal with a separated electrode. Equations are derived for the equivalent circuit parameters in a non-electrolyte solution and are verified experimentally. The resonance frequency fs is given by fs = f0[1 + C1/2(C0 + Cs)], where f0, C1 and C0 are the resonance frequency, motional capacitance and the shunt capacitance of the crystal respectively and Cs is the solution capacitance. The mechanical quality factor is the same as that of the crystal. The motional resistance, motional inductance, motional capacitance and shunt capacitance are respectively K2, K2, K−2 and K−1 times those of the crystal, where K = 1 + C0/Cs. The influence of the permittivity, density and viscosity of the solution and the configuration of the sensors on the equivalent parameters are investigated. The equivalent circuit parameters of a series piezoelectric crystal are also calculated and measured.  相似文献   

5.
The solubility of an anesthetic drug, LIDOCAINE, in water was investigated in the presence of ionic, nonionic and zwitterionic surfactants at 25 °C, and the solubility was found to increase linearly with the surfactant concentration. The molar solubilization ratio, R m,s, and Gibbs free energy, DGso\Delta G_{\mathrm{s}}^{\mathrm{o}} values for nonionic surfactants fall in the order DDAO > Brij 35 > Brij 30, whereas for ionic and zwitterionic surfactants the order is DDAPS > DTAB > SDS. The high negative values of the Gibbs energies in the cases of DDAO and DDAPS prove them to be better surfactants for solubilizing this drug as compared to the other surfactants.  相似文献   

6.
The dynamic viscosity of aqueous solutions of poly(acrylic acid) at a polymer concentration of ca. 0.15 g/100 ml has been measured at frequencies from 2 to 500 kHz as a function of degree of polymerization P, degree of neutralization α, and salt (NaCl) concentration Cs. Relaxation spectra have been obtained from the dynamic viscosity. The spectra in the short relaxation time region can be approximated by the Zimm theory for the conformational relaxation of nonionic polymers. The maximum relaxation time τ1 of the Zimm spectra is proportional to P2 and depends rather moderately on α and Cs. Increased deviation is found, however, in the long relaxation time region, in particular for high values of P and α and low values of Cs. The major part of the deviation is interpreted in terms of rotational relaxation of a molecule as a whole. The rotational relaxation time τR is proportional to P3 and increases with increasing α and decreasing Cs. The remaining part of the excess spectra located between τ1 and τR is ascribed to the deviation of the conformational relaxation from the Zimm theory arising from ionization of the polymer.  相似文献   

7.
Two charged polypeptides of opposite charge, poly(glutamic acid) (negative charge) and polylysine (positive charge), were end-labeled with Alexa fluorescent dyes, and their translational diffusion coefficient (D) values in dilute solutions (∼10−4 mg mL−1) were studied at the biological pH with fluorescence correlation spectroscopy as a function of the ionic strength (Cs) mediated by the addition of NaCl. At a moderate ionic strength, D increased consistently with expected chain contraction because of electrostatic screening. At a very high ionic strength, D of poly(glutamic acid) increased more rapidly, following the empirical power law RHCs−1/2 over a limited range of Cs, where the changes in D were interpreted as changes in the hydrodynamic radius, RH. However, D of polylysine at first decreased but eventually passed through a maximum followed by a decrease. These large increases implied that RH decreased considerably, in turn implying a strong contraction of the chain conformations even though the polymer remained soluble and showed no evidence of aggregation. For polylysine, the unexpected minimum RH value may be related to the salting-in phenomenon. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3497–3502, 2005  相似文献   

8.
We describe methods for determining the local environment of cations and the process of ionic clustering in ionomers, using electron magnetic resonance spectroscopy. The distance between Cu2+ cations in perfluorinated membranes (Nafion) containing terminal sulfonic groups and swollen by water has been deduced from an analysis of ESR spectra at L (1.25 GHz), S (2.36 GHz) and X (9.36 GHz) bands, in membranes containing cupric ion concentrations in the range 1–30 percent of the total amount needed to fully neutralize the pendant acid groups. At higher cation concentrations ESR spectra indicate the presence of aggregated cations. The intercation distance determination is based on the simulation of spectra from isolated cations using distribution widths δg11 and δA11 and extraction of the residual width ΔHR, which is due to dipolar interactions. No aggregation is detected in membranes swollen by less polar solvents such as methanol, dimethylformamide (DMF) and tetrahydrofuran (THF); these results are in contrast to SAXS experiments in membranes swollen by methanol, which exhibit the “ionic peak”. Cu2+-Cu2+ and Ti3+-Ti3+ dimers have been detected in Nafion swollen by water, methanol, DMF and THF, and have been characterized by an analysis of the spin-forbidden half-field Δms=2 transition, and by computer simulations. The intercation distance in the cupric dimers, deduced from the intensity ratio of the Δms=2 and Δms=1 dimer transitions, is 5.0±0.2 Å. A model for the dimer has been proposed, which explains the crosslinking of the polymer chains by the metal cations. ENDOR signals from 1H, 2H and 19F nuclei have been detected in Nafion neutralized by Ti3+. The ENDOR results allow determination of the local environment of the paramagnetic cations, to a distance of ∼10 Å.  相似文献   

9.
At one extreme of the proton‐transfer spectrum in cocrystals, proton transfer is absent, whilst at the opposite extreme, in salts, the proton‐transfer process is complete. However, for acid–base pairs with a small ΔpKa (pKa of base ? pKa of acid), prediction of the extent of proton transfer is not possible as there is a continuum between the salt and cocrystal ends. In this context, we attempt to illustrate that in these systems, in addition to ΔpKa, the crystalline environment could change the extent of proton transfer. To this end, two compounds of salicylic acid (SaH) and adenine (Ad) have been prepared. Despite the same small ΔpKa value (≈1.2), different ionization states are found. Both crystals, namely adeninium salicylate monohydrate, C5H6N5+·C7H5O3?·H2O, I , and adeninium salicylate–adenine–salicylic acid–water (1/2/1/2), C5H6N5+·C7H5O3?·2C5H5N5·C7H6O3·2H2O, II , have been characterized by single‐crystal X‐ray diffraction, IR spectroscopy and elemental analysis (C, H and N) techniques. In addition, the intermolecular hydrogen‐bonding interactions of compounds I and II have been investigated and quantified in detail on the basis of Hirshfeld surface analysis and fingerprint plots. Throughout the study, we use crystal engineering, which is based on modifications of the intermolecular interactions, thus offering a more comprehensive screening of the salt–cocrystal continuum in comparison with pure pKa analysis.  相似文献   

10.
A novel method is proposed for the purpose of controlled release of a sparingly water soluble compound. The solubility of a sparingly water soluble compound can be increased by addition of a sufficient amount of surfactant to form micelles. The flux of the compound across a porous membrane can be enhanced if the membrane has pores larger than the micelle size so that the compound-loaded micelles can diffuse simultaneously, and micelle-mediated transport occurs. The membrane permeability of the micelle is a monotonically decreasing function of the ratio of the size of the micelle to the membrane pore size (Rm/Rp). However, the solubilizing capacity of the micelle increases with increasing size of the micelle. These opposing effects influence the transport and may result in an optimum flux of the solubilizate at a particular size of the micelle. In the determination of the optimum surfactant molecule, the concept of the hydrophilic-lipophilic balance (HLB) is employed in order to have stable aqueous solutions of the surfactants. For a family of nonionic surfactants solubilizing the hydrophobic and hydrocarbon substance n-heptane, it is shown that there exists a maximum flux of the solubilizate at a value of Rm/Rp within the limitation of the HLB. The release rates over a long period of time are nearly constant for micelles close to the optimum size for a given pore size.  相似文献   

11.
The relaxation behavior of a series of polysiloxane dizwitterionomers has been studied by using dynamic mechanical and dielectric spectroscopy. The temperature range was 100–375 K and the frequency was ca. 1 Hz in the mechanical measurements and 50 Hz–50 kHz in the dielectric measurements. Three relaxation regions, labeled αs, β, αz in order of increasing temperature, were observed. The βs relaxation was assigned to the nonionic portion of the siloxane chain and correlated with the glass transition of polydimethylsiloxane. The β and αz processes are ionic-related relaxations; β probably originated from the motion of a chain segment carrying a dizwitterion, and αz, from the collapse of the organization in the ionic domains. Absorbed water exerts a profound influence on relaxation behavior–primarily on αz ionic relaxation and the relative rigidity of the samples. The water molecules solvate the ions and thus shift the αz relaxation to lower temperatures. Some aspects of the effect of thermal history on the microphase separation into domains have also been investigated. The results indicate that the organization of the zwitterions in the ionic domains is improved at slow cooling rates.  相似文献   

12.
The diffusive permeability of water P, which relates to diffusive flux of water under a concentration gradient of water (measured by diffusion of tritiated water), and the hydraulic permeability of water K, which relates to the water flux under a hydraulic pressure gradient are defined. For the case of diffusive transport one has P = KRT1, where ν1 is the molar volume of water. The relationship between P and K was investigated as a function of hydration H, i.e., the volume fraction of water in swollen polymer membranes. The following characteristic features of water permeability are revealed. (a) In the lowhydration region (H < 0.2), water permeates by diffusion even under an applied hydraulic pressure gradient and KRT1 = P. (b) In the higher hydration region KRT1 is greater than P, and the ratio ω = KRT1P increases nearly exponentially with decrease of (1-H)/H. Water in this region moves partly by bulk flow under an applied hydraulic pressure gradient but moves only by diffusion in the absence of a pressure gradient. (c) The dependence of log P on (1-H)/H is nearly linear in regions of both high and low hydration but the slopes are different. The transition occurs in about the same H range where the discrepancy between P and KRT1 becomes significant. Excellent agreement was found between the experimental data for P as a function of H and the theoretical prediction based on the free-volume concept of diffusive transport in hydrated homogeneous membranes.  相似文献   

13.
Wang  Dongqing  Sui  Jian  Qi  Di  Deng  Shuping  Wei  Yongteng  Wang  Xin  Lan  XiaoZheng 《Journal of Thermal Analysis and Calorimetry》2019,135(5):2869-2877

Confinement effect of nanopores on phase transition of docosane (n-C22H46, C22) is studied using differential scanning calorimetry (DSC) and temperature-dependent powdered X-ray diffractions (XRD). The bulk C22 has a stable rotator phase RI and RII. In the pores of CPGs, SBA-15, C-SBA-15, KIT-6, and MCM-41, the transition temperatures of solid–solid (Ts) and solid–liquid (Tm) transitions of C22 are depressed. The depression of the transition points (ΔTs, ΔTm) has a linear relation with the reverse diameter. However, the ΔTm values seemingly show weak relation with the polarity of the pore walls but to vary with the pore dimensionality. According to XRD analysis, C22 confined in CPG (11.5 nm) and SBA-15 (14.4 nm) present low temperature phase and rotator phase as the bulk, but the lamellar packing of molecules is heavily disturbed in the small pores.

  相似文献   

14.
The effects of NaBr on the adsorption of alkanediyl-bis-(dimethyl dodecyl- ammonium bromide) (referred to as C12-s-C12 2Br) at the air/water interface and on the micellization in the solution have been investigated by surface tension and fluorescence techniques. The results showed that the addition of NaBr greatly enhances their efficiency and effectiveness in surface tension reduction as well as the ability of micellization, even induces strong premicellar aggregation before the cmc. These were attributed to the unique molecular structure of gemini surfactant, where the flexible polymethylene chain was the spacer linking the two quaternary ammonium heads. By a short spacer, the charges of the two quaternary ammonium head groups are concentrated. Even for a long spacer (s = 12), since it is bent toward the alkyl tails, the similar effect is also produced. This results in the high sensitivity of their ionic head groups to salt. Besides, the addition of salt also effectively promotes the hydrophobic interaction between the alkyl tails of gemini surfactants. The addition of NaBr strongly promotes the adsorption of quaternary ammonium gemini surfactants C12-s-C12 2Br at the air/water interface and the micellization in the solution.  相似文献   

15.
The kinetics of oxygen exchange between water (H2O, D2O) and 18O-labelled bromate ion has been investigated over the range of 1.7 ≤ pH ≤ 14.3 and 20 ≤ °C ≤ 95. At 60° and ionic strength I ? 1.0M (NaNO3), the experimental results were consistent with the rate laws (R in moll?1 s?1): From the temperature dependence of the rate constants the activation parameters ΔH, ΔS and ΔC were derived. In the acid-catalysed region the form of the rate law and the direction of the solvent isotope effect were the same as previously found, but the numerical values of ΔH and k2H/k2D differ considerably. For the spontaneous and the OH?-catalysed exchange reactions bimolecular displacement mechanisms are proposed.  相似文献   

16.
The average interatomic distances D in oxygen polyhedra MO n of isostructural oxides were proposed to be estimated using the equation D = Kɛ(R M + R O) or D = Ax 2 + Bx + C, where x = ɛ(R M + R O), ɛ is the ionicity of the M-O bond, R M is the ionic radius of the cation M with account for the coordination in the polyhedron, and R O is the ionic radius of oxygen. Calculations were made for MO oxides having the rock-salt structure; Ln2O3 oxides, where Ln = Ce-Yb; and the MO2 oxides having the rutile and fluorite structures.  相似文献   

17.
张志凌  左超  庞代文 《化学学报》2005,63(22):2069-2076
采用自己建立的DNA表面电化学研究微量方法, 研究了单双链DNA与两种锇配合物(联吡啶锇和二氯菲咯啉锇)的相互作用. 研究发现, 两种锇配合物都是通过静电作用与DNA结合, 其作用方式不受溶液离子强度的影响. 并计算得到了联吡啶锇和二氯菲咯啉锇与dsDNA和ssDNA相互作用的多个热力学和动力学参数, 如结合常数K3+K2+, 结合常数比K3+/K2+, 离子强度为零时的极限比 , 结合自由能ΔGb, 解离速度常数k, 结合位点数s.  相似文献   

18.
Dodecyl polyoxyethylene(4) polyoxypropylene(5) ether (LS45) is an outstanding microemulsifier in supercritical CO2. The dynamic surface tension (DST) of this nonionic surfactant was investigated by using the maximum bubble pressure instrument. The effects of concentration and temperature on DST parameters (n, ti, t*, tm, and R1/2) and its adsorption mechanism were discussed by Rosen's empirical equation and the asymptotic Ward and Tordai equation for the LS45 solution system. Finally, the parameters at 1 s related to Draves's wetting performance, pC20(1s), C1s (i)*, and C1s*, analyzed. The results showed that were with increase of bulk concentration and temperature, dynamic surface activity increased. Parameters at 1 s indicated that LS45 is of high surface activity and a very good wetting agent. One‐second related parameters, C1s (i)* and C1s*, are valuable in the treatment of practical applications of surfactants. Optimum wetting can be expected at the concentration of 4.8×10?4 mol/dm3 for LS45 solution.  相似文献   

19.
The kinetics and mechanism of Hg2+‐catalyzed substitution of cyanide ion in an octahedral hexacyanoruthenate(II) complex by nitroso‐R‐salt have been studied spectrophotometrically at 525 nm (λmax of the purple‐red–colored complex). The reaction conditions were: temperature = 45.0 ± 0.1°C, pH = 7.00 ± 0.02, and ionic strength (I) = 0.1 M (KCl). The reaction exhibited a first‐order dependence on [nitroso‐R‐salt] and a variable order dependence on [Ru(CN)64?]. The initial rates were obtained from slopes of absorbance versus time plots. The rate of reaction was found to initially increase linearly with [nitroso‐R‐salt], and finally decrease at [nitroso‐R‐salt] = 3.50 × 10?4 M. The effects of variation of pH, ionic strength, concentration of catalyst, and temperature on the reaction rate were also studied and explained in detail. The values of k2 and activation parameters for catalyzed reaction were found to be 7.68 × 10?4 s?1 and Ea = 49.56 ± 0.091 kJ mol?1, ΔH = 46.91 ± 0.036 kJ mol?1, ΔS = ?234.13 ± 1.12 J K?1 mol?1, respectively. These activation parameters along with other experimental observations supported the solvent assisted interchange dissociative (Id) mechanism for the reaction. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 215–226, 2009  相似文献   

20.
Dependences of the surface tension of aqueous solutions of ionic (dodecylpyridinium bromide, sodium dodecylsulfonate) and nonionic (Triton X‐100) surfactants and their mixtures on total surfactant concentration and solution composition were studied, and the surface tension of the mixed systems were predicted using different Miller's model. It was found that how to select the model for calculation of ω is corresponding to the degree of the deviation from the ideality during the adsorption of mixed surfactants. The compositions of micelles and adsorption layers at air‐solution interface as well as parameters (βm, βads) of headgroup‐headgroup interaction between the molecules of ionic and nonionic surfactants were calculated based on Rubingh model. The parameters (B1) of chain‐chain interaction between the molecules of ionic and nonionic surfactants were calculated based on Maeda model. The free energy of micellization calculated from the phase separation model (ΔG 2 m ), and by Maeda's method (ΔG 1 m ) agree reasonably well at high content of nonionic surfactant. The excess free energy ΔG ads E and ΔG m E (except α=0.4) for TX‐100/SDSn system are more negative than that TX‐100/DDPB system. These can be probably explained with the EO groups of TX‐100 surfactant carrying partial positive charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号