首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The crystal structures of the titlke compounds have been determined by X-ray diffraction. Urea, I crystallizes in the triclinic PI space group with cell dimensions a = 8.336(2), b = 11.009(2), c = 13.313(2) Å, α = 105.55(3), β = 103.62(3), γ = 104.63(3)° and Z = 2 final R value 0.072 for 2105 observations. Urea, II crystallizes in the orthorhombic P212121 space group with cell dimensions a = 8.750(2), b = 10.844(3) and c = 21.215(3) Å and Z = 4, final R value 0.083 for 599 observations. All the hydrogen atoms were located in the complex urea, I ; urea molecules form hydrogen bonded dimers about centers of symmetry, these dimers are sandwiched between macrocyclic rings forming one simple and one bifurcated hydrogen bond from the “endo” hydrogen atoms to the ether oxygen atoms. These units are held by hydrogen bonding between the urea molecules and carboxylic acids in two other units; these hydrogen bonds are cyclic involving eight atoms -(N-H(exo)…O(keto)-C-O-H…O(urea)-C)-. Only one carboxylic acid group per molecule takes part in these hydrogen bonds, the other forms a short, 2.490(7) Å, internal bond to the acceptor keto oxygen atom. N(H)…O bonds range from 2.930(7) to 3.206(7) Å, O(H)…O is 2.475(6) Å. In the complex urea, II each urea is hydrogen bonded to three different host molecules and vice versa; the urea “endo” hydrogen atoms bond to the ether oxygen atoms, while both “exo” hydrogen atoms take part in cyclic hydrogen bonds to carboxylic acids. There is not internal hydrogen bond. N(H)…O bonds range from 2.83 to 3.26(2) A and the O-…O bonds are 2.55 and 2.56(2) Å.  相似文献   

2.
Triphenylbismuth bis(1-adamantanecarboxylate) was synthesized by reacting triphenylbismuth with 1-adamantanecarboxylic acid in the presence of hydrogen peroxide. In the complex, the coordination sphere of a bismuth atom is a trigonal bipyramid with C(Ph) atoms in the equatorial plane and O atoms in the apical positions. The Bi-C bond lengths are 2.213(4) Å (two bonds) and 2.222(5) Å; two Bi-O bond lengths are 2.306(3) Å. The Bi…O(=C) donor-acceptor interactions (2.716(3) Å) occur in the molecule. The equatorial CBiC angle on the side of the Bi…O(=C) contact is 157.1(2)°.  相似文献   

3.
The title compound, C7H8FO6PS·H2O, contains both phospho­nic and sulfonic acid functionalities. An extensive network of O—H?O hydrogen bonds is present in the crystal structure. The three acidic protons are associated with the phospho­nate group. Two protons experience typical hydrogen‐bond contacts with the sulfonate‐O atoms, while the third has a longer covalent bond of 1.05 (3) Å to the phospho­nate‐O atom and a short hydrogen‐bond contact of 1.38 (3) Å to the water O atom (all O—H?O angles are in the range 162–175°). The sulfonate group is positioned so that one S—O bond is nearly coplanar with the phenyl ring [torsion angle O—S—C—C ?8.6 (2)°]. The phospho­nate group is oriented approximately perpendicular to the ring [torsion angle P—C—C—C 99.2 (2)°] with one P—O bond anti to the benzyl C—C bond. The mol­ecules pack in layers in the bc plane with the water mol­ecules in between adjacent pairs of inverted layers.  相似文献   

4.
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character.  相似文献   

5.
Abstract

Mn(II) cations in the crystals of trisaquobis(μ-thiophen-2-carboxylato-O,O′)(thiophen-2-carboxylato-O)manganese(II) monohydrate are bridged by oxygen atoms donated by bidentate carboxylic groups of two thiophen-2-carboxylate ligands. In addition, each Mn(II) ion is coordinated by an oxygen atom of a monodentate carboxylic group of this ligand and three oxygen atoms of water molecules. The coordination around the Mn(II) cation is octahedral. The bridging of the ligands results in molecular ribbons propagating in the c-direction of the crystal held together by C?H…O hydrogen bonds. The crystal structure of diaquobis(μ-furan-3-carboxylato-O,O′)di(μ-furan-3-carboxylato-O,O)(μ-aqua-O)manganese(II) consists of dinuclear structural units. In each molecule Mn(II) cations are O,O′ bridged by oxygen atoms of bidentate carboxylic groups of two furan-3-carboxylate ligands and have a water located between the Mn cations. The units are O,O′ bridged to Mn(II) ions located in adjacent units by bidentate oxygen atoms, forming molecular ribbons extending in the c-direction. Octahedral coordination around each Mn(II) ion is completed by two water molecules. The octahedra around two adjacent metal ions in the unit share a common apex - the bridging oxygen atom of the water molecule. The ribbons are held together by C?H…O hydrogen bonds between furan ring oxygen atoms and the carbon atoms of adjacent furan rings.  相似文献   

6.
The title compound, [HgBr(C7H4NO4)(H2O)], was obtained by the reaction of an aqueous solution of mercury(II) bromide and pyridine‐2,6‐di­carboxylic acid (picolinic acid, dipicH2). The shortest bond distances to Hg are Hg—Br 2.412 (1) Å and Hg—N 2.208 (5) Å; the corresponding N—Hg—Br angle of 169.6 (1)° corresponds to a slightly distorted linear coordination. There are also four longer Hg—O interactions, three from dipicH? [2.425 (4) and 2.599 (4) Å within the asymmetric unit, and 2.837 (4) Å from a symmetry‐related mol­ecule] and one from the bonded water mol­ecule [2.634 (4) Å]. The effective coordination of Hg can thus be described as 2+4. The mol­ecules are connected to form double‐layer chains parallel to the y axis by strong O—H?O hydrogen bonds between carboxylic acid groups of neighbouring mol­ecules, and by weaker hydrogen bonds involving both H atoms of the water mol­ecule and the O atoms of the carboxylic acid groups.  相似文献   

7.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

8.
Tri-m-tolylbismuth bis(2-methoxybenzoate) (I) (84%), tri-m-tolylbismuth dibenzoate (II) (91%), and tri-m-tolylbismuth bis(trichloroacetate) (III) (92%) have been synthesized via the reaction between tri-m-tolylbismuth, carboxylic acid, and hydrogen peroxide. According to X-ray diffraction data, a bismuth atom in compounds I–III have a distorted trigonal bipyramidal coordination (disregarding the additional coordination of carbonyl oxygen atoms) to m-tolyl ligands in equatorial positions. The Bi-C bonds in compounds I, II, and III range within 2.193(3)–2.228(5) Å, and the Bi-O and Bi…O(=C) distances are 2.267(3), 2.282(3) Å and 2.791(6), 2.895(6) Å in I; 2.293(2), 2.296(3) Å and 2.815, 2.905(5) Å in II; and 2.278(4), 2.300(4) Å and 3.008(9), 3.115(9) Å in III. The equatorial CBiC angles on the side of Bi…O(=C) contacts are considerably enlarged, thus decreasing the other two angles (150.6°, 104.7°, and 104.7° in I, 140.2°, 107.4°, and 112.3° in II, and 138.0°, 110.1°, and 111.0° in III).  相似文献   

9.

The crystals of bis[ w -pyridine-2,6-dicarboxylato-O,N,O')]bis[trisaqua-calcium(II)] di(pyridine-2,6-dicarboxylic acid) contain dimeric molecules composed of two calcium(II) ions and two ligand molecules. Calcium ions are bridged by two bidentate oxygen atoms each donated by one carboxylic group of the ligand [Ca―N 2.467(2)Å], a monodentate oxygen atom of the second carboxylate group of the ligand [Ca―N 2.484(2)Å] and three oxygen atoms donated by the water molecules [mean Ca―O 2.388(2)Å]. The coordination polyhedron is a distorted pentagonal bipyramid. Acid molecules were found to be located in the space between dimers and involved in an extended network of hydrogen bonds.  相似文献   

10.
A new co-crystal of theophylline and phthalic acid with 1:1 molar ratio has been prepared. It crystallises in the monoclinic crystal system, space group P21/c, a=11.5258(9), b=10.1405(6), c=13.9066(12) Å, β=106.827(4)°. The structure of the co-crystal has been revealed by single crystal X-ray diffraction. An infinite helical polymeric chain is formed by intermolecular hydrogen bonds of the two neutral constituents. The hydroxyl group and carbonyl oxygen atom in one of the carboxyl groups of phthalic acid form hydrogen bonds to O6 and to N(7)H atoms of theophylline, respectively, while the other carboxyl OH group of phthalic acid is in hydrogen bond to N9 atom of theophylline by very strong intermolecular interactions proven by 1883 cm?1 centred peak in FTIR spectrum.Thermal degradation of this new supramolecular compound is a two-step process in air. At first phthalic acid (47.4%) released up to 230°C, meanwhile it loses water and transforms into phthalic anhydride. In EGA-MS spectra, the characteristic fragments of water (m/z=17, 18) appear from about 180°C, while absorption bands of phthalic anhydride are shown in EGA-FTIR spectrum at about 210°C. In the second step theophylline begins to sublime, melts at 276°C, and then evaporates up to 315°C with minute residues.  相似文献   

11.
The cocrystallization of adamantane‐1,3‐dicarboxylic acid (adc) and 4,4′‐bipyridine (4,4′‐bpy) yields a unique 1:1 cocrystal, C12H16O4·C10H8N2, in the C2/c space group, with half of each molecule in the asymmetric unit. The mid‐point of the central C—C bond of the 4,4′‐bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O—H...N hydrogen bonds [O...N = 2.6801 (17) Å] and the weaker of which are C—H...O hydrogen bonds [C...O = 3.367 (2) Å]. Alternate adc and 4,4′‐bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through π–π interactions along the c axis to generate two‐dimensional layers. These layers are neatly packed into a stable crystalline three‐dimensional form via weak C—H...O hydrogen bonds [C...O = 3.2744 (19) Å] and van der Waals attractions.  相似文献   

12.
The title compound, C15H12O, crystallizes in the centrosymmetric space group I41/a with one mol­ecule in the asymmetric unit. In the single hydrogen bond, the H atom is ordered, the OD?OA distance is 2.788 (1) Å and the O—H?O angle is 176 (1)°. Each hydroxyl group forms hydrogen bonds with two other hydroxyl groups and the resulting chains of interactions, in four non‐linked subsets of mol­ecules, propagate along [001]. The single leading intermolecular C—H?O interaction has an H?O distance of 2.81 Å and a C—H?O angle of 140°; the single leading intramolecular C—H?O interaction has an H?O distance of 2.24 Å and a C—H?O angle of 152°. The phenanthrene core is less nearly planar in this structure than in the room temperature structure of phenanthrene‐4‐carboxylic acid.  相似文献   

13.
Single crystals of [(C5H4NH)NC4H8NH(C3H5)]2+[Cu3Cl5]2? are obtained by ac synthesis in ethanol from 1-(2-pyridyl)-4-allyl-piperazinium and Cu(II) dichlorides and their structure is studied by X-ray diffraction analysis (space group P-1, a = 7.246(7) Å, b = 8.54(1) Å, c = 16.41(1) Å, α = 70.76(8)°, β = 77.24(8)°, λ = 80.42(9)°, V = 30(4) Å3, Z = 2, R(F) = 0.0686. In the structure of this π-complex, the Cu and Cl atoms form unusual centrosymmetrical Cu6Cl10 fragments, each fragment being bonded to two 1-(2-pyridyl)-4-allyl-piper-azinium cations via π-interaction Cu-(C=C). A three-dimensional structure is formed by means of N-H…Cl hydrogen bonds. The trigonal-pyramidal surrounding of the Cu(1) atom includes three Cl atoms and the C=C bond, while the tetrahedral surrounding of Cu(2) and the trigonal surrounding of Cu(3) involve the Cl atoms only.  相似文献   

14.
In ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–2,2′‐dipyridyl­amine (1/1), [Fe(C18H15O)2]·C10H9N3, (I), there is an intramolecular O—H?O hydrogen bond [H?O 2.03 Å, O?O 2.775 (2) Å and O—H?O 147°] in the ferrocenediol component, and the two neutral molecular components are linked by one O—H?N hydrogen bond [H?N 1.96 Å, O?N 2.755 (2) Å and O—H?N, 157°] and one N—H?O hydrogen bond [H?O 2.26 Å, N?O 3.112 (2) Å and N—H?O 164°] forming a cyclic R(8) motif. One of the pyridyl N atoms plays no part in the intermolecular hydrogen bonding, but participates in a short intramolecular C—H?N contact [H?N 2.31 Å, C?N 2.922 (2) Å and C—H?N 122°].  相似文献   

15.
The title complex [Ni2(C10H9N3)2(C14H8O5)2] n , which has an inversion center, midway between two Ni(II) atoms forms a one-dimensional polymer bridged by 4,4′-oxydibenzoate ligands with a Ni…Ni separation of 14.4705(11) Å. The Ni(II) atom is six-coordinated by two N atoms of a bis(2-pyridyl)amine ligand and four O atoms from two 4,4′-oxydibenzoate ligands, to form a distorted octahedron coordination geometry and then are linked via N-H…O and C-H…O hydrogen bonding into a polymeric ribbon structure. The activity and selectivity profiles of the polymer indicate that the optimization temperature and time span are 175°C and 30–40 min for the dehydration of cyclohexanol, respectively.  相似文献   

16.
In the crystal structure of O,O′‐diethyl N‐(2,4,6‐trimethylphenyl)thiophosphate, C13H22NO2PS, two symmetrically independent thiophosphoramide molecules are linked through N—H…S and N—H…π hydrogen bonds to form a noncentrosymmetric dimer, with Z′ = 2. The strengths of the hydrogen bonds were evaluated using density functional theory (DFT) at the M06‐2X level within the 6‐311++G(d,p) basis set, and by considering the quantum theory of atoms in molecules (QTAIM). It was found that the N—H…S hydrogen bond is slightly stronger than the N—H…π hydrogen bond. This is reflected in differences between the calculated N—H stretching frequencies of the isolated molecules and the frequencies of the same N—H units involved in the different hydrogen bonds of the hydrogen‐bonded dimer. For these hydrogen bonds, the corresponding charge transfers, i.e. lp (or π)→σ*, were studied, according to the second‐order perturbation theory in natural bond orbital (NBO) methodology. Hirshfeld surface analysis was applied for a detailed investigation of all the contacts participating in the crystal packing.  相似文献   

17.
The title compound has been prepared by reaction of (C5H5)2Cr with oxindole (indole with CO in place of CH2 at the 2-position). Red single crystals belong to space group P21/c with a = 10.107(4) Å, b = 22.496(7) Å, c = 9.210(3) Å, β = 93.26(3)°, V = 2091(2), and Z = 2. The centrosymmetric molecule has a CrCr distance of 2.495(4) Å. The mean CrO and CrN distances for the bonds to bridging oxindolate anions are 2.024(7) and 2.065(8) Å, respectively. There is an oxindole molecule bound at each end with a CrO axial bond of length 2.341(8) Å and a hydrogen bond from the oxindole NH group to an equatorial oxygen atom of length 2.83(1) Å. The significance of this compound with respect to CrCr bonding is discussed.  相似文献   

18.
The coordination polymer {[UO2(NO3)2(C11H20N4O2)] · 2H2O} n (I) was obtained and examined by X-ray diffraction. The crystals are monoclinic, space group C2/c; a = 23.1386(13), b = 5.41575(15), c = 19.7769(11) Å, β = 125.285(8)°, V = 2023.01(17) Å3, ρcalcd = 2.20 g/cm3, Z = 4. The U atom occupies a special position in the center of inversion. Its coordination polyhedron is a distorted hexagonal bipyramid with axial oxo ligands. In the equatorial plane, the U(1) atom is coordinated by four O atoms of two bidentate nitrate anions and two O atoms of two carbonyl groups of organic spirocarbone (Sk) molecules, which are related by the symmetry operation (0.5 ? x, 0.5 ? y, ?z). In the crystal, polymer chains are parallel to the direction (101). Water molecules are hydrogen-bonded to the N(1) atom of ligand Sk; in addition, they are linked together by the intermolecular hydrogen bonds O(6)-H(6d)…O(6)i(i1/2 ? x, ?1/2 + y, 1/2 ? z); H…O 2.11 Å angle O-H…O 160°) and to the nitrate anions by the hydrogen bonds O(6)-H(6e)…O(3)i; H…O 2.29 Å; the angle O-H…O 149°). In the crystal, hydrogen-bonded water molecules form chains along the axis y that are perpendicular to the coordination polymers. To verify the purity of complex I, the Rietveld refinement of its X-ray powder diffraction pattern was performed. At room temperature, the unit cell parameters are a = 23.2965(6), b = 5.51225(15), c = 19.8588(6) Å, β = 125.6063(17)°, V = 2073.40(10) Å3.  相似文献   

19.
Abstract

The thermal decomposition products of two substituted imino-1,2,4-dithiazoles have been studied by single crystal x-ray analysis. Both products crystallize in space group P21/c with four molecules per unit cell. The first product, obtained from 5-(dimethylamino)-3-(methylimino)-1,2,4-dithiazole has cell dimensions of a=9.922(8) Å, b=12.052(11) Å, c=13.358(12) Å and β=104.9(1)°. The molecule is made up of two planar segments related by an extremely large twist (?154°) about a C?N double bond. The results from this study have also contributed further information in the area of nonbonded interactions between ring and thione sulfur atoms. The second product, from 5-(dimethylamino)-3(phenylimino)-1,2,4-dithiazole was shown to be an ordered 1:1 complex of the starting material and one of its isomers. The cell dimensions are a=12.420(6) Å, b=8.840(9) Å, c=22.276(22) Å and β= 112.2(1)°. The different molecules are linked by an inter molecular NH… N hydrogen bond.  相似文献   

20.
Notwithstanding its simple structure, the chemistry of nitric oxide (NO) is complex. As a radical, NO is highly reactive. NO also has profound effects on the cardiovascular system. In order to regulate NO levels, direct therapeutic interventions include the development of numerous NO donors. Most of these donors release NO in a single high‐concentration burst, which is deleterious. N‐Nitrosated secondary amines release NO in a slow, sustained, and rate‐tunable manner. Two new precursors to sustained NO‐releasing materials have been characterized. N‐[2‐(3,4‐Dimethoxyphenyl)ethyl]‐2,4‐dinitroaniline, C16H17N3O6, (I), crystallizes with one independent molecule in the asymmetric unit. The adjacent amine and nitro groups form an intramolecular N—H…O hydrogen bond. The anti conformation about the phenylethyl‐to‐aniline C—N bond leads to the planes of the arene and aniline rings being approximately perpendicular. Molecules are linked into dimers by weak intermolecular N—H…O hydrogen bonds such that each amine H atom participates in a three‐center interaction with two nitro O atoms. The dimers pack so that the arene rings of adjacent molecules are not parallel and π–π interactions do not appear to be favored. N‐(4‐Methylsulfonyl‐2‐nitrophenyl)‐l ‐phenylalanine, C16H16N2O6S, (II), with an optically active center, also crystallizes with one unique molecule in the asymmetric unit. The l enantiomer was established via the configuration of the starting material and was confirmed by refinement of the Flack parameter. As in (I), there is an intramolecular N—H…O hydrogen bond between adjacent amine and nitro groups. The conformation of the molecule is such that the arene rings display a dihedral angle of ca 60°. Unlike (I), molecules are not linked via intermolecular N—H…O hydrogen bonds. Rather, the carboxylic acid H atom forms a classic, approximately linear, O—H…O hydrogen bond with a sulfone O atom. Pairs of molecules related by twofold rotation axes are linked into dimers by two such interactions. The packing pattern features a zigzag arrangement of the arene rings without apparent π–π interactions. These structures are compared with reported analogues, revealing significant differences in molecular conformation, intermolecular interactions, and packing that result from modest changes in functional groups. The structures are discussed in terms of potential NO‐release capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号