首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Thin films of isotactic polypropylene were drawn from the melt at a very high rate of extension. Transmission electron micrographs of this material reveal fibrous crystals lying along the draw direction. The chain axis and fiber axis are identical. Dark field micrographs show a dark/light modulation along the fiber axis. Annealing at temperatures below 110°C produces no qualitative change in the electron microscope observations. Annealing between 110 and 150°C produces gradual dominance of lamellar crystals, oriented normal to the draw direction. Small-angle x-ray scattering (SAXS) data exhibit a strong streaking normal to the fiber axis, in broad agreement with the observed fibrosity. A Bragg peak along the draw directions shows that the modulation observed microscopically is a density modulation. The absence of second-order maxima and the dependence of the SAXS peak on treatment temperature strongly suggest that the axial modulation is a spinodal decomposition of the material into crystalline and amorphous regions.  相似文献   

2.
The application of phosphotungstic acid (PTA) as a staining agent with appropriate hardening procedures and accurate ultra-thin sectioning has enabled the direct transmission electron microscope (TEM) investigation to be carried out on the lamellar fine structure of bulk nylon 6. Details of the organization of the crystal lamellae within spherulites and other morphological structures, their shape and, especially, their dimensions were revealed and the mean structural long period was determined. Interspherulitic regions without any indication of crystalline ordering could be observed in samples which were rapidly cooled from the melt. The investigations on bulk material were completed by observations on solution-grown thin films. Optical diffraction (OD) was used for evaluating the electron micrographs; the results were compared with the data from small angle X-ray scattering (SAXS).  相似文献   

3.
The melting behavior of drawn, compression-molded isotactic polypropylene has been ex-amined in terms of the infuence of drawing conditions on the observed properties. Two endothermic peaks were observed on differential scanning calorimetry (DSC) for samples when high draw ratios and high heating rates were used during DSC tests. The peak at lower temperature is influenced by draw ratio, temperature, and rate, and exhibits a strong superheating effect. The species associated with this peak can partially recrystallize into another species associated with the peak at higher temprature during DSC measurements. The position of the peak at higher temperature depends only on draw ratio. It is proposed that the doubel-melting peaks at lower and higher temperature result from extremely thin quasi-amorphous or crystalline layers between microfibrils and the lamellar crystals within microfibrils, repectively. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The room-temperature tensile mechanical properties and fracture topographies of polycarbonate are reported as a function of strain rate, sample preparation, and thermal history above and below Tg. The bulk physical structural changes produced by various thermal treatments were monitored by density, yield stress, and differential scanning calorimetry observations. Ordered regions do not form in bulk polycarbonate at or below 145°C. The changes produced in the mechanical properties of polycarbonate on annealing below Tg, relative to a quenched or 145°C equilibrium-state glass, are caused by liquidlike packing changes in free volume. In room-temperature tensile a 125°C–6 day annealed glass exhibits transitional behavior from shear free volume, such as quenched and 145°C equilibrium-state glasses, this transition occurs at higher strain rates. Polycarbonate embrittles as a result of the cessation of shear yielding and reversion to a crazing failure mode with a corresponding decrease in molecular flow and energy to failure. Density measurements indicate that ordered regions do start to grow immediately above 145°C in bulk polycarbonate. This phenomenon allows precrystalline and/or crystalline entities to grow below the bulk Tg in thin films and on the free surfaces of thick films where mobility restrictions are less severe than in the bulk. From bright-field transmission electron micrographs of thin films and carbon–platinum surface replicas of etched thick films it is suggested that the observed spherical precrystalline structures are aggregates of 50–60 Å ordered molecular do mains.  相似文献   

5.
Specific features of development of micro- and macrofibrils as well as the structure of their interfaces are considered for oriented filaments of high-density polyethylene with different initial supermolecular structures. As evidenced by SAXS, WAXS, EPR, Raman spectroscopy and electron microscopy, the melt-crystallized samples contain a greater amount of tie molecules connecting macro- and microfibrils than the samples crystallized from solution. This hampers slippage of fibrils past each other and does not allow high draw ratios to be achieved. It was found that the density of macrofibrillar ends in the drawn melt-crystallized samples is nearly an order of magnitude greater than that in the drawn samples crystallized from solution. This leads to generation of kink bands (dangerous large-scale defects) and, as a result, the sample, being oriented, fractures long before high draw ratios and a perfect fibrillar structure are reached. The ultraoriented samples produced from solution have a more perfect intrafibrillar structure, and the density of intrabrillar disordered regions is close to that of crystalline ones. Nevertheless, they do contain clusters of defects which limit their mechanical properties. The analysis of the Raman and X-ray data shows that these defects are localized at crystallite boundaries in the long periods. Possible routes for improvement of the parameters of the fibrillar structure and their relation with mechanical properties are discussed.  相似文献   

6.
The size and distortion of crystallites in samples of linear polyethylene were determined before and after plastic deformation. A slowly cooled sample, a quenched sample, and highly drawn films (draw ratio 16) were investigated by different methods. Wide-angle x-ray patterns were analyzed to study the average size of the crystalline mosaic blocks and their distortion. In addition, the longitudinal crystal thickness (in the chain direction) was evaluated by two other approaches, determination of the long period, and the melting temperature of irradiated samples. The results show clearly that the size of the crystalline mosaic blocks changes substantially with drawing of polyethylene. Not only is the lateral crystal thickness affected, but the longitudinal crystal dimensions also change during the drawing process. By the three independent methods we find that the longitudinal crystal thickness after drawing is independent of the value for the undrawn samples, as was reported earlier by Peterlin. The change in crystallite size after drawing is accompanied by a large decrease in crystal volume to about 10% of the value for the undrawn sample. The degree of distortion in the crystals seems not to be affected by the deformation process. These experimental data can be considered evidence for high chain mobility and for the possibility of rearrangement of chain molecules during the process of plastic deformation.  相似文献   

7.
Wide-angle x-ray scattering (WAXS) patterns of two polypropylene samples, a quenched sample drawn at 21°C and an annealed sample drawn at 100°C, were investigated in a range of values of draw ratio λ very closely spaced through the neck region. In both cases, a range of small λ where deformation occurred by spherulite deformation was followed by one of higher λ where microfibrils were formed. The contribution to the WAXS pattern of microfibrils could be clearly distinguished from that of deformed spherulites because of the better orientation parallel to the draw direction of the former as compared to the latter. Additionally, for a drawing temperature of 21°C, microfibrils crystallize in the “smectic” phase as compared to the monoclinic phase for the initial sample and deformed spherulites. At this temperature, plastic deformation proceeds through the spherulite deformation mechanism up to λ = 1.4 accompanied by an increase in chain orientation with increasing λ. For λ > 1.4 plastic deformation appears to occur exclusively through microfibril formation. For drawing at 100°C, spherulite deformation is accompanied by very little change in chain orientation up to λ = 2, where microfibril formation begins. For λ > 2 (Td = 100°C) plastic deformation is accompanied by both microfibril formation and some spherulite deformation as reflected by changes in both orientation and crystallite size. At this temperature the lateral crystallite size in the microfibrils is related to the long period according to the “equilibrium crystallite shape” previously found for annealed polypropylene.  相似文献   

8.
This study reports on the in situ characterization of the deformation mechanisms at room temperature of polyamide 6 (PA6) fibers filled with hyperbranched molecules or montmorillonite (MMT) platelets. A small‐angle X‐ray scattering study shows that the stretching and sliding of the microfibrils takes place concomitantly in the first stage of elastic loading of as‐spun and partially drawn fibers. In the second stage of loading, which is basically plastic, sliding turns out to be the main process of deformation, accompanied by a significant reduction in the microfibril radius. Fibers drawn close to their maximum draw ratio only display the deformation process of microfibril stretching. This in situ study also reveals subtle features of the reversible processes of deformation that could not be detected from ex situ experiments reported previously. A thickening of the crystal blocks in the microfibrils takes place under stress and disappears upon unloading, indicating that some reversible strain‐induced molecular ordering occurs in the amorphous layers close to the crystal surface. The tentative mechanical modeling enabled a characterization of the components of the fibers: the stiffness of the microfibrils appears to be insensitive to the presence of the particles that are excluded in the interfibrillar regions. The presence of HB molecules clearly increases the stiffness of the interfibrillar regions owing to a physical crosslinking effect. Moreover, it seems that the stiffness improvement of the drawn MMT‐PA6 fiber lies in a greater capability of chain unfolding in the interfibrillar amorphous region. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2633–2648, 2004  相似文献   

9.
Drawable water‐swollen cellulose films were prepared by coagulating in water two different cellulose organic solution systems. The drawability of the water‐swollen films was dependent on the rate of coagulation. Transparent films prepared by the slow coagulation showed good drawability and had a maximum draw ratio of 2.0. However, the drawn films maintained the highly noncrystalline state even after dried at 50°C under vacuum. X‐ray analysis and polarized FT‐IR measurements performed under a saturated deuterium oxide vapor of these dried drawn films, prepared by slow coagulation, showed that their noncrystalline regions (more than 80%) as well as crystalline regions (less than 20%) were highly oriented by the drawing process. Furthermore, meridional intensity curves in the X‐ray diffraction exhibited interesting patterns even though the drawn sample was highly noncrystalline. In fact, they are quite different from those in regenerated cellulose II fibers. However, despite this increase in draw ratio and in the orientation of the chains, the number of crystalline domains in the films did not increase significantly. This may perhaps be attributed to the three‐dimensional network structure resulting from the intermolecular hydrogen bonds between chains which are maintained through the drawing process and which can hinder the crystallization of cellulose. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 451–459, 1999  相似文献   

10.
Single-crystal mats of ultrahigh-molecular-weight polyethylene can be drawn uniformly to high draw ratios, more than 20χ at the highest, after the necking process is completed. The dynamic mechanical modulus of the drawn mats increases markedly during the uniform drawing stage. The structural changes induced by the uniform drawing at 100°C have been followed by wide-angle and small-angle x-ray scattering, infrared absorption, differential scanning calorimetry, and birefringence. The crystallinity is estimated from the x-ray amorphous scattering intensity, the IR absorbance of gauche bands, the heat of fusion from DSC, and the density. The estimated crystallinities of the drawn mats are all very high and increase slightly and monotonically with increased drawing after necking, though the values of the crystallinity depend on the method of estimation. IR gauche bands and the SAXS peak due to the long period disappear at a draw ratio of about 80χ. All the results suggest that the uniform drawing after necking destroys the two-phase structure made up of alternately stacked crystalline and amorphous regions and then reorganizes it into a single-phase crystalline structure.  相似文献   

11.
The morphology of drawn and annealed sheets of nylon-12 was investigated by transmission electron microscopy of stained sections, and the results compared with equivalent small-angle X-ray scattering (SAXS) patterns. A three-component structure was observed, consisting of crystalline (C) and amorphous (A) regions in the microfibrils and an interfibrillar component whose density was deduced to be intermediate between that of the C and A regions. The crystallite width was given satisfactorily by a Guinier analysis of the SAXS profile.Dedicated to Prof. Dr. R. Bonart on the occasion of his 60th birthday.  相似文献   

12.
The vanadium dioxide (VO2) thin films were deposited on silicon (100) substrate using the pulsed laser deposition technique. The thin films were deposited at different substrate temperatures (500°C, 600°C, 700°C, and 800°C) while keeping all the other parameters constant. X‐ray diffraction confirmed the crystalline VO2 (B) and VO2 (M) phase formation at different substrate temperatures. X‐ray photoelectron spectroscopy analysis showed the presence of V4+ and V5+ charge states in all the deposited thin films which confirms that the deposited films mainly consist of VO2 and V2O5. An increase in the VO2/V2O5 ratio has been observed in the films deposited at higher substrate temperatures (700°C and 800°C). Scanning electron microscope micrographs revealed different surface morphologies of the thin films deposited at different substrate temperatures. The electrical properties showed the sharp semiconductor to metal transition behavior with approximately 2 orders of magnitude for the VO2 thin film deposited at 800°C. The transition temperature for heating and cooling cycles as low as 46.2°C and 42°C, respectively, has been observed which is related to the smaller difference in the interplanar spacing between the as‐deposited thin film and the standard rutile VO2 as well as to the lattice strain of approximately −1.2%.  相似文献   

13.
By means of electron microscopy of surface replicas and both small-angle and wide-angle x-ray scattering, nylon 6 fibers were investigated in the as-spun state, after drawing at 180°C to a draw ratio up to 4.95, and after subsequent annealing. As spun, the fiber exhibits a small fraction of row-nucleated cylindrites and a great many spherulites (with an average diameter of a few microns) side by side. Drawing deforms the spherulites into spindle-shaped structures (λ = 2) and subsequently produces well-aligned microfibrils. Small-angle x-ray scattering yields a two-point diagram at small λ and a fourpoint diagram at high λ. The long period seems to decrease slightly with draw ratio. Annealing at temperatures above the temperature of drawing increases the long period to a greater extent with samples of lower λ. The crystal lattice orientation is nearly complete at λ = 4.95.  相似文献   

14.
The sorption and diffusion of toluene vapor at 30°C in polypropylene with draw ratios from 1 to 18 have been studied. Drawing leads to the transformation of the initially spherulitic material into the fibrous structure, with many taut tie molecules lying mainly on the outer boundary of the microfibrils. The free volume and hence the sorption sites are thereby reduced, and the microfibrils become less and permeable as the draw ratio increases. As a result, the equilibrium concentration and the zero-concentration diffusion coefficient drop by factors of 4 and 30, respectively. The diffusion coefficient increases exponentially with toluene concentration but the concentration dependence becomes weaker with increasing draw ratio, indicating that the severely constrained chain segments in the drawn samples have much less freedom to mix with penetrant molecules. Annealing relaxes the tie molecules and thus restores the sorption and diffusion properties to values corresponding to completely relaxed amorphous component, i.e., to values even higher than those of the undrawn but quenched material.  相似文献   

15.
This study concerns the thermal and mechanical response of several commercial grades of ethylene – tetrafluoroethylene copolymer films. Differential scanning calorimetry was used to show that, although films have similar degrees of crystallinity and melting temperature, the melting endotherms and crystallisation exotherms differ between materials, suggesting small changes in composition between manufacturers. Films were deformed in tension at a range of temperatures and rates. Selected films were unloaded immediately after stretching, and measurement of the elastic recovery highlighted further differences between materials. Batches of films were pre-drawn uniaxially above the glass transition and immediately quenched. When these materials were subsequently re-drawn below the glass transition temperature, most of them exhibited much improved yield stress, modulus and tensile strength (improving by factors of 5, 5 and 4, respectively at a draw ratio of 3), but a reduced strain to failure. In most of the films, the pre-drawing, as well as the initial orientation of the films, is accounted for by a simple shift in the true strain axis. This is indicative of a material response dominated by entropic network stretch. It also suggests that, in the cases where strain superposition does not work, a different arrangement of crystalline lamellae may be present, limiting the extent to which improved properties can be achieved in some materials.  相似文献   

16.
Extruded thin films of a liquid-crystalline charge-conjugated rigid-rod polymer poly(p-phenylenebenzobisthiazole), PBT, and a semicrystalline thermoplastic polyethylene-terephthalate (Mylar) were fabricated and examined for film thickness, refractive index, and linear attenuation coefficient. Optical waveguide modes were successfully induced on the polymeric films using a prism coupler at λ = 633 and 1300 nm. Highly consistent thickness values were obtained for the polymeric films. In addition, the anisotropic nature of the optical properties was determined using TE and TM propagation modes. A refractive index as high as 2.3 was observed on PBT film. The refractive index data suggested that the PBT and Mylar films were optically anisotropic with refractive indices n? (out-of-plane) invariably smaller than n∥ (in-plane). Large anisotropy was also discovered in the linear attenuation coefficient α, with α? ≈ 50 for the Mylar films. Complementary polarimetric and spectroscopic interference measurements were also applied to investigate the optical anisotropy of the extruded polymeric films. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
Stained and unstained sections of nylon 6 fibers are examined by means of transmission electron microscopy. Data are presented regarding dimensions and shape of macrofibrils, microfibrils, amorphous, and crystalline domains of the microfibril and the spacing between the microfibrils. The new results support the conclusions of a previous SAXS and diffusion study carried out with the same fibers.  相似文献   

18.
Microfibrillar composites (MFCs) were prepared using different draw/stretch ratios [viz. 2, 5, 8 and 10] from polypropylene/polyethylene terephthalate (PP/PET) blends. Scanning electron microscopy [SEM] images revealed that PET microfibrils were highly oriented after melt blending and drawing. After the conversion of drawn (stretched) blends to MFCs the PET microfibrils were found to be randomly distributed in the PP matrix. The tensile strength and modulus of the MFCs were found to be higher for the samples drawn at stretch ratios 5 and 8 on account of the long PET microfibrils they possessed. The non isothermal crystallization behaviour of the neat blend (as extruded), stretched blend and the MFC was compared. The oriented PET fibrils in the stretched blend were found to have a greater nucleating effect for the crystallization of PP than the spherical PET particles in the neat blend and randomly oriented short PET fibrils in the MFC. Dynamic rheology studies indicated the storage modulus and loss modulus of MFCs were enhanced as draw ratio increases up to an optimized level beyond which they decrease. When the draw ratio increased up to the optimized level the MFCs tended to be more viscous, especially at low frequency, whereas further increasing the draw ratio resulted in a decrease in the complex viscosity. The microfibrils of PET in the MFC were found to perturb the relaxation of molten PP matrix.  相似文献   

19.
CuInGaSe2薄膜太阳能电池因具有稳定、高效、低成本和环保等特点而受到国内外科学家的重视.采用Mo/钠钙玻璃衬底为研究电极,饱和甘汞电极(SCE)为参比电极,大面积的铂网电极为辅助电极的三电极体系,在钼/钠钙玻璃衬底上利用电沉积技术制备出太阳能电池用的CuInGaSe2薄膜.分析了不同热处理温度对电沉积制备的CuInGaSe2薄膜的影响,结果表明:当热处理温度为450℃时,所制备的CuInGaSe2薄膜的化学组成接近理想的化学计量比,薄膜具有黄铜矿结构,颗粒均匀和致密性较好.  相似文献   

20.
Behaviours of drawn semi-crystalline poly(ethylene terephthalate) films are investigated by DSC, X-ray diffraction and birefringence measurements. The comparison of the different results confirms the coexistence of two structures into the amorphous part of the material: a completely disordered amorphous phase and a mesomorphic amorphous one. Moreover, for the strongest draw ratio, the calorimetric results show that the drawing effect on the strain induced crystalline structure proceeds by a better orientation of this structure rather than by nucleation and growth of new oriented crystallites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号