首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three new polymers poly(3,4′′′‐didodecyl) hexaselenophene) (P6S), poly(5,5′‐bis(4,4′‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (HHP6S), and poly(5,5′‐bis(3′,4‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (TTP6S) that have the same selenophene‐based polymer backbone but different side chain patterns were designed and synthesized. The weight‐averaged molecular weights (Mw) of P6S, HHP6S, and TTP6S were found to be 19,100, 24,100, and 19,700 with polydispersity indices of 2.77, 1.48, and 1.41, respectively. The UV–visible absorption maxima of P6S, HHP6S, and TTP6S are at 524, 489, and 513 nm, respectively, in solution and at 569, 517, and 606 nm, respectively, in the film state. The polymers P6S, HHP6S, and TTP6S exhibit low band gaps of 1.74, 1.95, and 1.58 eV, respectively. The field‐effect mobilities of P6S, HHP6S, and TTP6S were measured to be 1.3 × 10?4, 3.9 × 10?6, and 3.2 × 10?4 cm2 V?1 s?1, respectively. A photovoltaic device with a TTP6S/[6,6]‐phenyl C71‐butyric acid methyl ester (1:3, w/w) blend film active layer was found to exhibit an open circuit voltage (VOC) of 0.71 V, a short circuit current (JSC) of 5.72 mA cm?2, a fill factor of 0.41, and a power conversion efficiency (PCE) of 1.67% under AM 1.5 G (100 mW cm?2) illumination. TTP6S has the most planar backbone of the tested polymers, which results in strong π–π interchain interactions and strong aggregation, leading to broad absorption, high mobility, a low band gap, and the highest PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The present highlight discusses major work in the synthesis of low bandgap diketopyrrolopyrrole ( DPP )‐based polymers with donor–acceptor–donor ( D–A–D ) approach and their application in organic electronics. It examines the past and recent significant advances which have led to development of low bandgap DPP ‐based materials with phenyl and thiophene as donors. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4241–4260  相似文献   

3.
An alternating donor‐acceptor copolymer based on a benzotriazole and benzodithiophene was synthesized and selenophene was incorporated as π‐bridge. The photovoltaic and optical properties of polymer were studied. The copolymer showed medium band gap and dual absorption peaks in UV‐Vis absorption spectra. Photovoltaic properties of P‐SBTBDT were performed by conventional device structure. The OSC device based on polymer: PC71BM (1:1, w/w) exhibited the best PCE of 3.60% with a Voc of 0.67 V, a Jsc of 8.95 mA/cm2, and a FF of 60%. This finding was supported with morphological data and space charge limited current (SCLC) mobilities. The hole mobility of the copolymer was estimated through SCLC model. Although surface roughness of the active layer is really high, mobility of a polymer was found as 7.46 × 10?3 cm2/Vs for optimized device that can be attributed to Se?Se interactions due to the larger, more‐polarizable Se atom. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 528–535  相似文献   

4.
A series of novel low band gap donor-acceptor (D-A) type organic co-polymers (BT-F-TPA,BT-CZ-TPA and BT-SI-TPA) consisting of electron-deficient acceptor blocks both in main chains (M1) and at the pendant (M2) were polymerized with different electron rich donor (M3-M5) blocks,i.e.,9,9-dihexyl-9H-fluorene,N-alkyl-2,7-carbazole,and 2,6-dithinosilole,respectively,via Suzuki method.These polymers exhibited relatively low band gaps (1.65-1.88 eV) and broad absorption ranges (680-740 nm).Bulk heterojunction (BHJ) solar cells incorporating these polymers as electron donors,blended with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as electron-acceptors in different weight ratios were fabricated and tested under 100 mW/cm2 of AM 1.5 with white-light illumination.The photovoltaic device containing donor BT-SI-TPA and acceptor PC71BM in 1:2 weight ratio showed the best power conversion efficiency (PCE) value of 1.88%,with open circuit voltage (Voc) =0.75 V,short circuit current density (Jsc) =7.60 mA/cm2,and fill factor (FF) =33.0%.  相似文献   

5.
The synthesis of donor–acceptor type semiconducting copolymers is described. Quinoxaline (QX) or difluorinated quinoxaline (DFQX) derivatives serve as electron acceptors, while thiophene (T) or selenophene (Se) serve as electron donors. Alternating polymers are synthesized through Stille cross‐coupling, and their thermal stability, optical and electrochemical properties, field‐effect carrier mobilities, film crystallinities, and photovoltaic performances are investigated. The intramolecular charge transfer between the electron‐donating and electron‐accepting units in the backbone induces absorption from 450 to 750 nm. The optical band‐gap energies of the polymers are between 1.65 and 1.73 eV, and depend on the polymer structure. Organic photovoltaic cells fabricated using a polymer composed of DFQX and selenophene (PSe‐DFQX) exhibit a power conversion efficiency of 5.14% with an open‐circuit voltage of 0.78 V, a short‐circuit current density of 11.71 mA/cm2, and fill factor of 0.57 under AM 1.5 G irradiation (100 mW cm?2). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1904–1914  相似文献   

6.
In this study, donor–acceptor random polymers containing benzotriazole acceptor and bistriphenylamine and benzodithiophene donors, P1 and P2 , were successfully synthesized by Stille coupling polymerization. The effect of bistriphenylamine moiety and thiophene π‐conjugated linker on electrochemical, spectroelectrochemical, and optical behaviors of the polymers were investigated. Optoelectronic properties and photovoltaic performance of the polymers were examined under the illumination of AM 1.5G, 100 mW cm?2. The polymers were characterized by cyclic voltammetry, UV‐Vis‐NIR absorption spectroscopy, gel permeation chromatography. HOMO/LUMO energy levels of P1 and P2 were calculated as ?5.47 eV/–3.41 eV and ?5.43 eV/–3.27 eV, respectively. Bulk heterojunction type solar cells were constructed using blends of the polymers (donor) and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) (acceptor). Photovoltaic studies showed that the highest power conversion efficiency of these photovoltaic devices were recorded as 3.50% with open circuit voltage; 0.79 V, short circuit current; 9.45 mA cm?2, fill factor; 0.53 for P1 :PC71BM (1:2, w/w) in 3% o‐dichlorobenzene (o‐DCB) solution and 3.15% with open circuit voltage; 0.75 V, short circuit current; 8.59 mA cm?2, fill factor; 0.49 for P2 :PC71BM (1:2, w/w) in 2% chlorobenzene (CB) solution. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3705–3715  相似文献   

7.
In this study, two new benzotriazole (BTz) and dithienothiophene (DTT) containing conjugated polymers were synthesized. After successful characterizations of the monomers by proton‐nuclear magnetic resonance (1H NMR) and carbon‐NMR (13C NMR) techniques, poly(4‐(dithieno[3, 2‐b:2′,3′‐d]thiophen‐2‐yl)‐2‐(2‐octyldodecyl)‐2H‐benzo[d][1,2,3] triazole) P1 and poly(4‐(5‐(dithieno[3,2‐b:2′,3′‐d]thiophen‐2‐yl)thiophen‐2‐yl)‐2‐(2‐octyldodecyl)‐7‐(thiophen‐2‐yl)‐2H‐benzo[d][1,2,3]triazole) P2 were synthesized via a typical Stille coupling. Electrochemical and spectroelectrochemical studies showed that both polymers can be multipurpose materials and used in electrochromic and photovoltaic applications. Reported study indicated that incorporation of DTT into the structure leads to fast switching times compared with BTz‐based polymers and competent percentage transmittance in the near‐infrared region. Multichromism is important in the context of low‐cost flexible display device technology and both polymers are ambipolar and processable as well as multichromic. Throughout the preliminary photovoltaic studies, the best performances of photovoltaic devices were found as Voc = 0.49 V, Jsc = 0.83 mA/cm2, fill factor (FF) = 34.4%, and power conversion efficiency (PCE) = 0.14% for P1 , and as Voc = 0.35 V, Jsc = 1.57 mA/cm2, FF = 38.2%, and PCE = 0.21% for P2 . © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Donor–acceptor type polymers bearing diketopyrrolopyrrole and 3,4‐ethylenedioxythiophene units are reported. The polymers are green and exhibit very low band‐gaps (1.19 eV) with strong and broad absorption (maxima of about 830 nm) in the near infrared (NIR) region in their neutral film states. The polymers display color changes between dark green and light blue with exceptional optical contrasts in the NIR regions of up to 78 and 63% as thin films and single‐layer electrochromic devices, respectively. Fast switching, good stabilities as well as high coloration efficiencies (743–901 cm2 C?1) were also observed. The polymers could also be potentially used as photovoltaic material, with a power conversion efficiency of up to 1.68%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1287–1295  相似文献   

9.
通过Stille聚合反应合成了含有苯并[1,2-b:4,5-b']二噻吩和二噻吩邻苯二甲酰亚胺的D-A结构平面共聚物PBDTPhBT.该聚合物热稳定性和在常见有机溶剂中的溶解性良好、在380~580nm范围内有强吸收.分子模拟计算的结果表明,聚合物主链具有较好的平面型.PBDTPhBT的光学带隙为2.10eV、用电化学方法测量的HOMO能级为5.23eV.以聚合物PBDTPhBT为给体、PC70BM为受体(给受体重量比为1:1)、Ca/Al为负极制备了本体异质结聚合物太阳能电池.在AM1.5,100mWcm2光照条件下器件的开路电压和短路电流分别为0.79V和5.63mAcm2,能量转换效率达到了1.76%.  相似文献   

10.
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547  相似文献   

11.
A series of new donor–acceptor‐type low‐band‐gap semiconducting polymers were synthesized as electron donors for organic photovoltaic cells. The polymers comprised quinoxaline derivatives as the acceptors and a benzodithiophene (BDT) derivative as the donors. 5,8‐Dibromoquinoxaline (Qx), 8,11‐dibromobenzo[a]phenazine (BPz), 10,13‐dibromodibenzo[a,c]phenazine (DBPz), and 8,11‐dibromo‐5‐(9H‐carbazol‐9‐yl)benzo[a]phenazine) (CBPz) were synthesized and polymerized with 2,6‐bis(trimethyltin)?4,8‐diethylhexyloxybenzo‐[1,2‐b;3,4‐b]dithiophene (BDT) through Stille cross‐coupling to produce four types of fully conjugated semiconducting polymers: PBDT‐Qx, PBDT‐BPz, PBDT‐DBPz, and PBDT‐CBPz , respectively. Intramolecular charge transfer between the electron donating and accepting units in the polymeric backbone induced a broad absorption from 300 to 800 nm. The optical band gap energies of the polymers were measured from their absorption onsets to be 1.54–1.80 eV depending on the polymer structure. Solution‐processed field‐effect transistors were fabricated to measure the hole mobilities of the polymers, and bulk hetero‐junction photovoltaic devices were fabricated using the synthesized polymers as electron donors and fullerene derivatives as electron acceptors. One of these devices showed a high power conversion efficiency of 3.87% with an open‐circuit voltage of 0.78 V, a short‐circuit current of 9.68 mA/cm2, and a fill factor of 0.51 under air mass 1.5 global (AM 1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4136–4149  相似文献   

12.
13.
A series of donor‐acceptor conjugated polymers incorporating benzodithiophene (BDT) as donor unit and phenanthrenequnioxaline as acceptor unit with different side chains have been designed and synthesized. For polymer P1 featuring the BDT unit and alkoxy chains substituted phenanthrenequnioxaline unit in the backbone, serious steric hindrance resulted in quite low molecular weight. The implementation of thiophene ring spacer in polymer P2 greatly suppressed the interannular twisting to extend the effective conjugation length and consequently gave rise to improved absorption property and device performance. In addition, utilizing the alkylthienyl side chains to replace the alkyl side chains at BDT unit in polymer P3 further enhanced the photovoltaic performance due to the increased conjugation length. For polymer P4, translating the alkoxy side chains at the phenanthrenequnioxaline ring into the alkyl side chains at thiophene linker group enhanced molecular planarity and strengthened π?π stacking. Consequently improved absorption property and increased hole mobility were achieved for polymer P4. Our results indicated that side chain engineering not only can influence the solubility of polymer but also can determine the polymer backbone planarity and hence the photovoltaic properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1915–1926  相似文献   

14.
Novel supramolecular side‐chain polymers were constructed by complexation of proton acceptor (H‐acceptor) polymers, i.e., side‐chain conjugated polymers P1–P2 containing pyridyl pendants, with low‐band‐gap proton donor (H‐donor) dyes S1–S4 (bearing terminal cyanoacrylic acids) in a proper molar ratio. Besides unique mesomorphic properties confirmed by DSC and XRD results, the H‐bonds of supramolecular side‐chain structures formed by pyridyl H‐acceptors and cyanoacrylic acid H‐donors were also confirmed by FTIR measurements. H‐donor dyes S1–S4 in solid films exhibited broad absorption peaks located in the range of 471–490 nm with optical band‐gaps of 1.99–2.14 eV. Furthermore, H‐bonded polymer complexes P1/S1–P1/S4 and P2/S1–P2/S4 exhibited broad absorption peaks in the range of 440–462 nm with optical band‐gaps of 2.11–2.25 eV. Under 100 mW/cm2 of AM 1.5 white‐light illumination, the bulk heterojunction polymer solar cell (PSC) devices containing an active layer of H‐bonded polymer complexes P1/S1–P1/S4 and P2/S1–P2/S4 (as electron donors) mixed with [6,6]‐phenyl C61 butyric acid methyl ester (i.e., PCBM, as an electron acceptor) in the weight ratio of 1:1 were investigated. The PSC device containing H‐bonded polymer complex P1/S3 mixed with PCBM (1:1 w/w) gave the best preliminary result with an overall power conversion efficiency (PCE) of 0.50%, a short‐circuit current of 3.17 mA/cm2, an open‐circuit voltage of 0.47 V, and a fill factor of 34%. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5998–6013, 2009  相似文献   

15.
Three kinds of dithienothiophene/carbazole‐based conjugated polymers ( P1–P3 ), which bear acid‐protected and benzoic acid pendants in P2 and P3 , respectively, were synthesized via Suzuki coupling reaction. Interestingly, P1 – P3 exhibited reversible electrochromism during the oxidation processes of cyclic voltammogram studies, and P3 (with H‐bonds) revealed the best electrochromic property with the most noticeable color change. According to powder X‐ray diffraction (XRD) analysis, these polymers exhibited obvious diffraction features indicating bilayered packings between polymer backbones and π‐π stacking between layers in the solid state. Compared with the XRD data of P2 (without H‐bands), H‐bonds of P3 induced a higher crystallinity in the small‐angle region (corresponding to a higher ordered bilayered packings between polymer backbones), but with a similar crystallinity in the wide angle region indicating a comparable π‐π stacking distance between layers. Moreover, based on the preliminary photovoltaic properties of PSC devices ( P1 – P3 blended individually with PCBM acceptor in the weight ratio of 1:1), P3 (with H‐bonds) possessed the highest power conversion efficiency of 0.61% (with Jsc = 2.26 mA/cm2, FF = 29.8%, and Voc = 0.9 V). In contrast to P2 (without H‐bands), the thermal stability, crystallinity, and electrochromic along with photovoltaic properties of P3 were generally enhanced due to its H‐bonded effects. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Low‐band gap selenophene‐based polymers were synthesized. Their optoelectronic and photovoltaic properties and space‐charge limited currents were compared with those of the related thiophene‐based polymers. The band gaps of the Se‐based derivatives were approximately 0.05–0.12 eV lower than those of their thiophene counterparts. Organic photovoltaic (OPV) devices based on the blends of these polymers and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C71 (PC71BM) were fabricated, and the maximum power conversion efficiency of the OPV device based on PSPSBT and PC71BM was 3.1%—with a short‐circuit current density (Jsc) of 9.3 mA cm?2, an open‐circuit voltage (Voc) of 0.79 V, and a fill factor of 0.42—under AM 1.5 G illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4550–4557  相似文献   

17.
<正>Novel main-chain-conjugated poly(carbazol-alt-squaraine) and poly(dipyridyl-alt-squaraine) were successfully synthesized through direct polycondensation of 9-(2-ethylhexyl)carbazole-bridged or dipyridyl-bridged bispyrrole and squaric acid.The structures and properties of the polymers were characterized using ~1H NMR,FT-IR,UV-vis and cyclic voltammetry.Both polymers exhibit excellent solubility in common organic solvents and good thermal stability.Their UV-vis absorption spectra indicated the polymers have broad and strong spectral responses from 200 nm to 900 nm,which reveals a low optical band gap around 1.38 eV, suggesting that they may be promising candidates for organic solar cells.  相似文献   

18.
Four new donor–acceptor (donor) [D–A(D)], PBDT‐PTQ, PBDT‐PTTQ, PBDT‐TQ, and PBDT‐TTQ, bearing the same backbone of alternative benzodithiophene (BDT) and quinoxaline units but with phenylene thienyl, phenylene di‐thienyl, thienyl and di‐thienyl groups (other donors), respectively, at the acceptor quinoxaline units, were designed and synthesized to investigate the impacts of the conjugated side chains at the acceptor units on the photovoltaic properties of polymers. The power conversion efficiencies (PCEs) of the polymer solar cells (PSCs) based on PBDT‐TQ:[6,6]‐phenyl‐C‐70‐butyric acid methyl ester (PC70BM) and PBDT‐PTQ:PC70BM reach to 4.39 and 3.58%, respectively, which are 43 and 17% higher, respectively, than that of a reported alkylphenyl substituted polymer with the same main chain. However, the PCEs based on PBDT‐TTQ and PBDT‐PTTQ, in which an additional thiophene is added at a side chain of PBDT‐TQ and PBDT‐PTQ, respectively, decline. The mechanism how the conjugated side chains affect the performance of the PSCs is also discussed. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Novel copolymers consisting of the alternating push–pull comonomers fluorene and thieno[3,4‐b]pyrazine/quinoxaline were synthesized by a palladium‐catalyzed Suzuki cross‐coupling reaction in 60–80% yields. The structure of the deeply colored copolymers was confirmed with 1H and 13C NMR. All the new materials were characterized with spectroscopic and electrochemical methods. Bulk heterojunction organic solar cells based on some of the novel polymers in combination with the well‐known fullerene acceptor [6,6]‐phenyl C61–butyric acid methyl ester were fabricated, and their photovoltaic parameters were measured. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6952–6961, 2006  相似文献   

20.
A series of novel low band gap polymers containing conjugated side chains with 4,7‐dithien‐5‐yl‐2,1,3‐benzodiathiazole and different electron‐withdrawing end groups of aldehyde ( PT‐DTBTCHO ), 2‐ethylhexyl cyanoacetate ( PT‐DTBTCN ), 1,3‐diethyl‐2‐thiobarbituric acid ( PT‐DTBTDT ), and electron‐donating end group of 2‐methylthiophene ( PT‐DTBTMT ) have been designed and synthesized. All polymers exhibit good solubility in common organic solvents, film‐forming ability, and thermal stability. These conjugated polymers show the broad ultraviolet‐visible absorption and the narrow optical band gaps in the range of 1.65–1.90 eV. Through changing the end group of conjugated side chains, the photophysical properties and energy levels of the polymers were tuned effectively. Bulk heterojunction solar cells based on the blend of these polymers and (6,6)‐phenyl‐C61‐butyric acid methyl ester (PC61BM) reached the best power conversion efficiency (PCE) of 2.72%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号