首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fermentation of (+)-androst-4-ene-3,17-dione (1) with Curvularia lunata for 10 days yielded five oxidative and reductive metabolites, androsta-1,4-diene-3,17-dione (2), 17beta-hydroxyandrosta-1,4-dien-3-one (3), 11alpha-hydroxyandrost-4-ene-3,17-dione (4), 11alpha,17beta-dihydroxyandrost-4-en-3-one (5) and 15alpha-hydroxyandrosta-1,4-dien-17-one (6). The structures of these metabolites were elucidated on the basis of spectroscopic techniques. These microbially transformed products were assayed against the clinically important enzymes, tyrosinase and prolyl endopeptidase.  相似文献   

2.
Mycobacterium neoaurum is ideal strain for bioconversion of sterol into steroid drugs. 96-well plate high throughput screen was validated to be able to discriminate the mimic mixtures of 4-androstene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and bisnoraldehyde (BA) optimized by uniform design, which is more rapid and higher throughput than the HPLC-based method.  相似文献   

3.
Fermentation of (+)-androsta-1,4-diene-3,17-dione ([structure: see text]) with Cephalosporium aphidicola for 8 days yielded oxidative and reductive metabolites, androst-4-ene-3,17-dione ([structure: see text]), 17beta-hydroxyandrosta-1,4-diene-3-one ([structure: see text]), 11alpha-hydroxyandrosta-1,4-diene-3,17-dione ([structure: see text]), 11alpha-hydroxyandrost-4-ene-3,17-dione ([structure: see text]), 11alpha,17beta-dihydroxyandrost-4-ene-3-one ([structure: see text]) and 11alpha,17beta-dihydroxyandrosta-1,4-diene-3-one ([structure: see text]). The fermentation of [structure: see text] with Fusarium lini also yielded metabolites [structure: see text]. The structures of these metabolites were elucidated on the basis of spectroscopic techniques.  相似文献   

4.
Testosterone metabolism revisited: discovery of new metabolites   总被引:1,自引:0,他引:1  
The metabolism of testosterone is revisited. Four previously unreported metabolites were detected in urine after hydrolysis with KOH using a liquid chromatography–tandem mass spectrometry method and precursor ion scan mode. The metabolites were characterized by a product ion scan obtained with accurate mass measurements. Androsta-4,6-dien-3,17-dione, androsta-1,4-dien-3,17-dione, 17-hydroxy-androsta-4,6-dien-3-one and 15-androsten-3,17-dione were proposed as feasible structures for these metabolites on the basis of the mass spectrometry data. The proposed structures were confirmed by analysis of synthetic reference compounds. Only 15-androsten-3,17-dione could not be confirmed, owing to the lack of a commercially available standard. That all four compounds are testosterone metabolites was confirmed by the qualitative analysis of several urine samples collected before and after administration of testosterone undecanoate. The metabolite androsta-1,4-dien-3,17-dione has a structure analogous to that of the exogenous anabolic steroid boldenone. Specific transitions for boldenone and its metabolite 17β-hydroxy-5β-androst-1-en-3-one were also monitored. Both compounds were also detected after KOH treatment, suggesting that this metabolic pathway is involved in the endogenous detection of boldenone previously reported by several authors.  相似文献   

5.
Microbial hydroxylation of pregnenolone derivatives   总被引:1,自引:0,他引:1  
Pregnenolone and pregnenolone acetate were incubated with the fungi Cunninghamella elegans, Rhizopus stolonifer and Gibberella fujikuroi. Incubation of with C. elegans yielded metabolites, 3beta,7beta,11alpha-trihydroxypreg-5-en-20-one, 3beta,6alpha,11alpha,12beta,15beta-pentahydroxypreg-4-en-20-one and 3beta,6beta,11alpha-trihydroxypreg-4-en-20-one, while incubation with G. fujikuroi yielded two known metabolites, 3beta,7beta-dihydroxypregn-5-en-20-one and 6beta,15beta-dihydroxypreg-4-ene-3,20-dione. Metabolites and were found to be new. Fermentation of by C. elegans yielded four known oxidative metabolites, androsta-1,4-diene-3,17-dione, 6beta,15beta-dihydroxyandrost-4-ene-3,17-dione and 11alpha,15beta-dihydroxypreg-4-ene-3,20-dione. Fermentation of with R. stolonifer yielded two known metabolites, 11alpha-hydroxypreg-4-ene-3,20-dione and. Compounds were screened for their cholinesterase inhibitory activity in a mechanism-based assay.  相似文献   

6.
Current evidence suggests that neo formation of the anabolic steroid boldenone (androsta-1,4-diene-17-ol-3-one) occurs in calves' faecal material, making it difficult to distinguish between illegally administered boldenone and its potential endogenous presence. This strengthens the urgent need to elucidate the pathway leading to boldenone formation. In our laboratory, the invertebrate Neomysis integer (Crustacea, Mysidacea) was used since 2004 as an alternative model for the partial replacement of vertebrate animals in metabolisation studies with illegal growth promotors and veterinary drugs, e.g. boldenone. The present study evaluates the metabolic capacity of other invertebrates, the brine shrimp Artemia franciscana and maggots of the greenbottle fly Lucilia sericata. The first results indicate that maggots of L. sericata are able to convert phytosterols and -stanols, nowadays in substantial amounts added to animal feed, into androsta-1,4-diene-3,17-dione (ADD), the precursor of boldenone, at a yield of 0.10-0.14% (p<0.001, significance compared to endogenous excretion of maggots) but not to boldenone itself. Furthermore, beta-testosterone, an endogenous hormone, was transformed into androst-4-ene-3,17-dione (AED), ADD and beta-boldenone at a significant (p<0.001, significance compared to endogenous excretion of maggots) yield of circa 13%, 0.80% and 2.2%, respectively. In future studies these results are of value to further evaluate the use of maggots of L. sericata as an invertebrate model in metabolisation studies.  相似文献   

7.
A simple, rapid, and accurate method based on thin-layer chromatography (TLC) combined with image-analysis software has been developed for analysis of steroid drug intermediates formed during bioconversion of soysterols. The results obtained have been compared with those from LC. The method has been used to monitor the accumulation of widely used steroid drug intermediates androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD), formed during the bioconversion of soysterols by Mycobacterium sp. NRRL B-3805 and Mycobacterium sp. NRRL B-3683. The percentage error between TLC and LC ranged between ?0.79 to +4.50 for AD and ?0.61 to +2.48 for ADD. Maximum conversion of soysterols to AD and ADD by Mycobacterium sp. NRRL B-3805 was 49.83 and 9.36 mol%, respectively, after incubation for 144 h, whereas conversion of soysterols by Mycobacterium sp. NRRL B-3683 after incubation 288 h was 41.90 mol% for AD and 37.79 mol% for ADD.  相似文献   

8.
The microbial transformation of (+)-adrenosterone (1) by Cephalosporium aphidicola afforded three metabolites identified as androsta-1,4-diene-3,11,17-trione (2), 17beta-hydroxyandrost-4-ene-3,11-dione (3) and 17beta-hydroxyandrosta-1,4-diene-3,11-dione (4). The fermentation of 1 with Fusarium lini also produced metabolites 2 and 4, while the fermentation with Trichothecium roseum afforded metabolite 3. The structures of transformed products were determined by spectroscopic methods.  相似文献   

9.
Molecular-imprinting by cross-linking of ligands of ??-cyclodextrin (CD) complex with steroids has been developed for the synthesis of tailor-made CD dimer. Steroids of androstane (9??-hydroxy-androst-4-en-3,17-dione, androst-4-en-3,17-dione, androsta-1,4-dien-3,17-dione (ADD)) and pregnane (hydrocortisone, 6-methyl-hydrocortisone, 20-hydroxymethylpregna-1,4-diene-3-one (HMPD)) series were used as template molecules. For imprinting procedure, crystalline ??-CD complexes of exact stoichiometry (??-CD:steroid template = 2:1) were synthesized following by toluene 2,4-diisocyanate (TDI) cross-linking. The attempts to produce CD dimer for steroid without hydrophobic side chain failed, while tailor-made CD dimer has been obtained using HMPD as a template. The dimer was characterized by 1H NMR and mass-spectrometry. The complex stability constant (KS) towards HMPD template exceeded 107 M?1. The KS of CD dimer with ADD exceeded the corresponded value of TDI-modified CD monomer by more than an order of magnitude. The dimer was applied for quantitative extraction of ADD from aqueous solution using dialysis membranes impermeable for CD. The value of KS for ADD estimated from balanced concentrations of dialysis data corresponded to that calculated by nonlinear spectrometric method.  相似文献   

10.
The photochemistry of anti-inflammatory drug desonide (De, 1) was studied in aerobic as well as in anaerobic condition with different irradiation wavelengths (254, 310 nm) in acetonitrile and 2-propanol. All photoproducts obtained were isolated and characterized on the basis of IR, (1)H-, (13)C-NMR spectroscopy and elemental analysis study. The products were: 11beta,21-dihydroxy-16alpha,17alpha-(1-methylethylidenedioxy)-1,5-cyclopregn-3-ene-2,20-dione 2 (254 nm), 11beta-hydroxy-16alpha,17alpha-(1-methylethylidenedioxy)androsta-1,4-diene-3-one 3 (310 nm/2-propanol), 17beta-hydroperoxy-11beta-hydroxy-16alpha,17alpha-(1-methylethylidenedioxy)androsta-1,4-diene-3-one 4 (310 nm/O(2)/2-propanol). Cyclohexadienone moiety in ring A and keto group at C(17) were found to be deeply modified by UV light therefore, loss of biological activity both during storage and in vivo can not be ruled out.  相似文献   

11.
For over a decade there has been an intensive debate on the possible natural origin of boldenone (androst-1,4-diene-17beta-ol-3-one, 17beta-boldenone) in calf urine and several alternative markers to discriminate between endogenously formed boldenone and exogenously administered boldenone have been suggested. The currently approved method for proving illegal administration of beta-boldenone(ester) is the detection of beta-boldenone conjugates. In the presented method the sulphate, glucuronide and free fractions are separated from each other during cleanup on a SAX column to be able to determine the conjugated status of the boldenone metabolites. The sulphate and glucuronide fractions are submitted to hydrolysis and all three fractions are further cleaned up on a combination of C18/NH2 solid-phase extraction (SPE) columns. Chromatographic separation of the boldenone metabolites was achieved with a Waters Acquity UPLC instrument using a Sapphire C18 (1.7 microm; 2x50 mm) column within 5 min. Detection of the analytes was achieved by electrospray ionisation tandem mass spectrometry. The decision limits of this method, validated according to Commission Decision 2002/657/EC, were 0.08 ng mL(-1) for androsta-1,4-diene-3,17-dione, 0.13 ng mL(-1) for androst-4-ene-3,17-dione, 0.11 ng mL(-1) for 17alpha-boldenone, 0.07 ng mL(-1) for 17beta-boldenone, 0.24 ng mL(-1) for 5beta-androst-1-en-17beta-ol-3-one and 0.58 ng mL(-1) for 6beta-hydroxy-17beta-boldenone. Because of the fractionation approach used in this method there is no need for conjugated reference standards which often are not available. The disadvantage of needing three analytical runs to determine the conjugated status of each of the metabolites was overcome by using fast chromatography.  相似文献   

12.
The residue profiles of boldenone (17β-Bol), its epimer (17α-Bol) and the related compound androsta-1,4-diene-3,17-dione (ADD), were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in urine of male calves orally treated with boldenone, boldenone esters, and/or ADD. In all the experiments with the administered steroids residues of 17α-Bol decreased rapidly after end of treatment; detectable amounts of 17α-Bol were however noticed along the withdrawal observation period after end of treatment. Differently, residues of 17β-Bol were detectable only shortly after administration. This in vivo research concerning oral treatments of cattle with boldenone related substances proves ADD to be a very active boldenone precursor in bovine animals.  相似文献   

13.
This paper describes the development of a normal-phase liquid chromatograph-UV-diode array detection-positive ion atmospheric pressure chemical ionization-mass spectrometry method for the simultaneous identification and quantitation of cholesterol, androst-4-ene-3,17-dione (AD), and androsta-1,4-diene-3,17-dione (ADD) in fermentation broths. The compounds detected under positive ion atmospheric pressure chemical ionization on a mass spectrometer by selected ion monitoring are separated by normal-phase high-performance liquid chromatography. [M+H]+ ions are taken into consideration for quantitation of AD and ADD, and [M-H2O+H]+ ions are considered for quantitation of cholesterol. The compounds are analyzed on a Si60 silica (5 microm, 125 x 4-mm i.d.) Merck column using a 2:3 isocratic mixture of isopropyl alcohol and hexane. The calibration curves resulting from the reference compounds in the concentration range of 100-5000 pg on column exhibit a good linear correlation (r2 > or = 0.996). The method is validated by analyzing six replicates of broth samples fortified with three compounds, namely, cholesterol, AD, and ADD, at 0.050 and 0.5 microg/g levels. The mean recoveries for the fortifications range from 90% to 98% with relative standard deviations in the range of 3.36% to 9.78%. The method is developed to study the qualitative as well as quantitative conversion of cholesterol to AD and ADD by a microorganism identified as Nocardia sp. These studies helped the investigation of the reaction kinetics, which showed that the molar biotransformation of cholesterol into AD and ADD was 21%, even when the reaction was prolonged for 96 h.  相似文献   

14.
First representatives of bis-2-chloro- and 2,2-dichlorovinyl ketones, 1,10-dichlorodeca-1,9-diene-3,8-dione and 1,1,10,10-tetrachlorodeca-1,9-diene-3,8-dione, were synthesized by reaction of hexanedioyl dichloride with acetylene and 1,1-dichloroethene, respectively, in the presence of AlCl3. 1,1,10,10-Tetrachlorodeca-1,9-diene-3,8-dione reacted with benzylhydrazine and 1,1-dimethylhydrazine to give 1,4-bis(1-benzyl-5-chloro-1H-pyrazol-3-yl)butane and 1,4-bis(5-chloro-1-methyl-1H-pyrazol-3-yl)butane, respectively.  相似文献   

15.
A sensitive rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS) method, combined with solid-phase extraction, ultrasonic extraction and silica gel cartridge cleanup, was developed for 28 steroids including 4 estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynyl estradiol (EE2), diethylstilbestrol (DES)), 14 androgens (androsta-1,4-diene-3,17-dione (ADD), 17α-trenbolone, 17β-trenbolone, 4-androstene-3,17-dione, 19-nortestoserone, 17β-boldenone, 17α-boldenone, testosterone (T), epi-androsterone (EADR), methyltestosterone (MT), 4-hydroxy-androst-4-ene-17-dione (4-OHA), 5α-dihydrotestosterone (5α-DHT), androsterone (ADR), stanozolol (S)), 5 progestagens (progesterone (P), ethynyl testosterone (ET), 19-norethindrone, norgestrel, medroxyprogesterone (MP)), and 5 glucocorticoids (cortisol, cortisone, prednisone, prednisolone, dexamethasone) in surface water, wastewater and sludge samples. The recoveries of surface water, influents, effluents and sludge samples were 90.6-119.0% (except 5α-DHT was 143%), 44.0-200%, 60.7-123% and 62.6-138%, respectively. The method detection limits for the 28 analytes in surface water, influents, effluents and freeze-dried sludge samples were 0.01-0.24 ng/L, 0.02-1.44 ng/L, 0.01-0.49 ng/L and 0.08-2.06 ng/g, respectively. This method was applied in the determination of the residual steroidal hormones in two surface water of Danshui River, 12 wastewater and 8 sludge samples from two wastewater treatment plants (Meihu and Huiyang WWTPs) in Guangdong (China). Ten analytes were detected in surface water samples with concentrations ranging between 0.4 ng/L (17β-boldenone) and 55.3 ng/L (5α-DHT); twenty analytes in the wastewater samples with concentrations ranging between 0.3 ng/L (P) and 621 ng/L (5α-DHT); and 12 analytes in the sludge samples with concentrations ranging between 1.6 ng/g (E1) and 372 ng/g (EADR).  相似文献   

16.
Natural occurrence or illegal treatment of boldenone (BOLD) presence in cattle urine is under debate within the European Union. Separation of conjugated and unconjugated forms of 17alpha-boldenone (alpha-BOLD) and 17beta-boldenone (beta-BOLD) and presence of related molecules as androsta-1,4-diene-3,17-dione (ADD) appear critical points for the decision of an illegal use. The aim of this study is a new analytical approach of BOLD and ADD confirmation in cattle urine. The separation between conjugated and unconjugated forms of BOLD was obtained by a preliminary urine liquid-liquid extraction step with ethyl acetate. In this step the organic phase extracts only unconjugated BOLD and ADD, while BOLD in conjugated form remain in urine phase. Afterwards the urine phase, contains conjugated BOLD, was subjected to an enzymatic deconjugation. Solid-phase extraction (OASIS-HLB Waters) was used for the purification and concentration of analytes in organic and urine phases and liquid chromatography ion electrospray tandem mass spectrometry (LC-MS-MS) was applied for the confirmation of BOLD and ADD, using deuterium-labelled 17beta-boldenone (BOLD-d3) as internal standard. The method was validated as a quantitative confirmatory method according to the Commission Decision 2002/657/CE. The results obtained demonstrate that the developed method show very high specificity, precision, trueness and ruggedness. Decision limits (CCalpha) smaller than 0.5 ng mL(-1) were obtained for each analyte.  相似文献   

17.
An acyl iminium ion-initiated tandem cyclization gave an unexpected dienone product, a seco-azasteroid (2). The factors governing the formation of 2 were investigated in an attempt to optimize its formation. The reaction was applied to a more elaborate system, resulting in the synthesis of the full steroid skeleton of 13-azaandrosta-1,4-diene-3,17-dione (3), which contains the unusual substitution of a chlorine atom for the axial 19-methyl.  相似文献   

18.
陈旺  胡代花  冯自立 《化学通报》2019,82(12):1126-1129
本文以1,4-雄烯二酮为起始原料,经溴代消除、羰基保护、氧化、不完全氢化及脱保护6步反应,以27.3%的总收率合成1a-羟基去氢表雄酮。 该方法具有经济、技术可行、安全环保等优点,可为1a-羟基去氢表雄酮的规模生产及维生素D类药物合成研究提供参考。  相似文献   

19.
Resolution of rac.-estra-4,9-diene-3,17-dione is achieved by enantioselective, microbiological reduction.  相似文献   

20.
Faeces, which could be a potential alternative medium for doping control, have been used for the detection of 1,4-androstadiene-3,17-dione administration to the horse. Semi-quantitative analyses of 1,4-androstadiene-3,17-dione, testosterone, 17alpha- and 17beta-boldenone have been conducted in pre- and post-administration faeces, and in controls (untreated stallions, geldings and mares). Sample preparation comprised diethyl ether extraction, lipid removal, HPLC purification and derivatisation. 1,4-Androstadiene-3,17-dione, testosterone, 17alpha- and 17beta-boldenone were analysed by GC-EI/MS/MS. Quantitative limits of detection were 0.1 ng/g for 1,4-androstadiene-3,17-dione, and 0.025 ng/g for testosterone, 17alpha- and 17beta-testosterone. In post-administration samples from geldings and mares, peak levels of 1,4-androstadiene-3,17-dione, 17alpha-, 17beta-boldenone and testosterone were attained 24 h after administration. In untreated geldings and mares (in di- or anoestrus), 17alpha- and 17beta-boldenone and testosterone were not detected. Faeces from females in oestrus had detectable levels of boldenone isomers and testosterone. 1,4-Androstadiene-3,17-dione was undetectable in faeces collected from untreated horses, but the presence of this androgen was recently reported in faeces from untreated swine and it would therefore be advisable to check for its possible presence in a larger number of individual faecal samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号