首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design and evaluation of a Dean vortex-based micromixer   总被引:2,自引:0,他引:2  
A mixer, based on the Dean vortex, is fabricated and tested in an on-chip format. When fluid is directed around a curve under pressure driven flow, the high velocity streams in the center of the channel experience a greater centripetal force and so are deflected outward. This creates a pair of counter-rotating vortices moving fluid toward the inner wall at the top and bottom of the channel and toward the outer wall in the center. For the geometries studied, the vortices were first seen at Reynolds numbers between 1 and 10 and became stronger as the flow velocity is increased. Vortex formation was monitored in channels with depth/width ratios of 0.5, 1.0, and 2.0. The lowest aspect ratio strongly suppressed vortex formation. Increasing the aspect ratio above 1 appeared to provide improved mixing. This design has the advantages of easy fabrication and low surface area.  相似文献   

2.
A microfluidic traveling-wave electrophoresis (TWE) system is reported that uses a locally defined traveling electric field wave within a microfluidic channel to achieve band transport and separation. Low voltages, over a range of -0.5 to +0.5 V, are used to avoid electrolysis and other detrimental redox reactions while the short distance between electrodes, ~25 μm, provides high electric fields of ~200 V cm(-1). It is expected that the low voltage requirements will simplify the future development of smaller portable devices. The TWE device uses four interdigitated electrode arrays: one interdigitated electrode array pair is on the top of the microchannel and the other interdigitated electrode array pair is on the microchannel bottom. The top and bottom substrates are joined by a PDMS spacer that has a nominal height of 15 μm. A pinched injection scheme is used to define a narrow sample band within an injection cross either electrokinetically or hydrodynamically. Separation of two dyes, fluorescein and FLCA, with baseline resolution is achieved in less than 3 min and separation of two proteins, insulin and casein is demonstrated. Investigation of band broadening with fluorescein reveals that sample band widths equivalent to the diffusion limit can be achieved within the microfluidic channel, yielding highly efficient separations. This low level of band broadening can be achieved with capillary electrophoresis, but is not routinely observed in microchannel electrophoresis. Sample enrichment can be achieved very easily with TWE using a device with converging electric field waves controlled by two sets of independently controlled interdigitated electrodes arrays positioned serially along the microchannel. Sample enrichment of 40-fold is achieved without heterogeneous buffer/solvent systems, sorptive, or permselective materials. While there is much room for improvement in device fabrication, and many capabilities are yet to be demonstrated, it is anticipated that the capabilities and performance demonstrated herein will enable new lab-on-a-chip processes and systems.  相似文献   

3.
A computational "toolbox" for the a priori design of optimized microfluidic components is presented. These components consist of a microchannel under low-Reynolds number, pressure-driven flow, with an arrangement of grooves cut into the top and bottom to generate a tailored cross-channel flow. An advection map for each feature (i.e., groove of a particular shape and orientation) predicts the lateral transport of fluid within the channel due to that feature. We show that applying these maps in sequence generates an excellent representation of the outflow distribution for complex designs that combine these basic features. The effect of the complex three-dimensional flow field can therefore be predicted without solving the governing flow equations through the composite geometry, and the resulting distribution of fluids in the channel is used to evaluate how well a component performs a specified task. The generation and use of advection maps is described, and the toolbox is applied to determine optimal combinations of features for specified mixer sizes and mixing metrics.  相似文献   

4.
A novel method of sheathless particle focusing by induced charge electrokinetic flow in a microchannel is presented in this paper. By placing a pair of metal plates on the opposite walls of the channel and applying an electrical field, particle focusing is achieved due to the two pairs of vortex that constrain the flow of the particle solution. As an example, the trajectories of particles under different electrical fields with only one metal plate on one side channel wall were numerically simulated and experimentally validated. Other flow focusing effects, such as the focused width ratio (focused width/channel width) and length ratio (focused length/half‐length of metal plate) of the sample solution, were also numerically studied. The results show that the particle firstly passes through the gaps between the upstream vortices and the channel walls. Afterwards, the particle is focused to pass through the gap between the two downstream vortices that determine the focused particle position. Numerical simulations show that the focused particle stream becomes thin with the increases in the applied electrical field and the length of the metal plates. As regards to the focused length ratio of the focused stream, however, it slightly increases with the increase in the applied electrical field and almost keeps constant with the increase in the length of the metal plate. The size of the focused sample solution, therefore, can be easily adjusted by controlling the applied electrical field and the sizes of the metal plates.  相似文献   

5.
《Electrophoresis》2017,38(9-10):1310-1317
In this paper, we investigate a novel alternating current electrothermal (ACET) micromixer driven by a high efficiency ACET micropump. The micromixer consists of thin film asymmetric pairs of electrodes on the microgrooved channel floor and array of electrode pairs fabricated on the top wall. By connecting electrodes with AC voltage, ACET forces are induced. Asymmetric microgrooved electrodes force the fluids along the channel, while lateral vortex pairs are generated by symmetric electrode pairs located on the top wall. Waviness of the floor increases contact area between two confluent streams within a narrow confinement. An active mixer operates as a semi active semi passive mixer. Effects of various parameters are investigated in details in order to arrive at an optimal configuration that provides for efficient mixing as well as appreciable transport. It is found that using a specific design, uniform and homogeneous mixing quality with mixing efficiency of 97.25% and flow rate of per unit width of the channel can be achieved.  相似文献   

6.
We have carried out quantum calculations on selected residues at the intracellular side of the selectivity filter of the KcsA potassium channel, using the published X-ray coordinates as starting points. The calculations involved primarily the side chains of residues lining the aqueous cavity on the intracellular side of the selectivity filter, in addition to water molecules, plus a K+ or Na+ ion. The results showed unambiguously that Na+ significantly distorts the symmetry of the channel at the entrance to the selectivity filter (at the residue T75), while K+ does so to a much smaller extent. In all, three ion positions have been calculated: the S4 (lowest) position at the bottom of the selectivity filter, the top of the cavity, and the midpoint of the cavity; Na+ is trapped at the cavity top, while K+ is cosolvated by the selectivity filter carbonyl groups plus threonine hydroxyl groups so that it can traverse the filter. Only one water molecule remains in the K+ solvation shell at the upper position in the cavity; this solvation shell also contains four threonine (T75) hydroxyl oxygens and two backbone carbonyls, while Na+ is solvated by five molecules of water and one oxygen from threonine hydroxyls. T75 at the entrance to the selectivity filter has a key role in recognition of the alkali ion, and T74 has secondary importance. The energetic basis for the preferential bonding of potassium by these residues is briefly discussed, based on additional calculations. Taken together, the results suggest that Na+ would have difficulty entering the cavity, and if it did, it would not be able to enter the selectivity filter.  相似文献   

7.
Ahn B  Lee K  Lee H  Panchapakesan R  Oh KW 《Lab on a chip》2011,11(23):3956-3962
We present a simple method of water-in-oil droplet synchronization in a railroad-like channel network. The network consisted of a top channel, a bottom channel, and ladder-like channels interconnected between the two main channels. The presence of the pressure difference between the top and bottom channels resulted in the crossflow of carrier oil through the ladder network until the pressure in each channel was balanced automatically. The proposed model and method proved the feasibility of the parallel synchronization of two trains of droplets with up to 95% synchronization efficiency. Physical parameters that could improve the efficiency were investigated with the systematic variation of the droplet length and droplet generation frequency by controlling the flow rate in each channel. Under a subtle difference in the generation frequency, an unmatched droplet sandwiched between two matched droplets in the ladder network was switched and synchronized in turn. For perfect one-to-one droplet synchronization, the droplet length and the droplet generation frequency needed to be the same for both the top and bottom channels. In addition, one-to-multiple droplet synchronization was demonstrated by matching the product of the droplet length and the droplet generation frequency for both the top and bottom channels. The proposed method provides a simple unit operation for parallel synchronization of the trains of droplets that can be easily integrated with the conventional continuous-flow droplet-based microfluidic platform.  相似文献   

8.
AC electroosmotic micromixer for chemical processing in a microchannel   总被引:1,自引:0,他引:1  
A rapid micromixer of fluids in a microchannel is presented. The mixer uses AC electroosmotic flow, which is induced by applying an AC voltage to a pair of coplanar meandering electrodes configured in parallel to the channel. To demonstrate performance of the mixer, dilution experiments were conducted using a dye solution in a channel of 120 microm width. Rapid mixing was observed for flow velocity up to 12 mm s(-1). The mixing time was 0.18 s, which was 20-fold faster than that of diffusional mixing without an additional mixing mechanism. Compared with the performance of reported micromixers, the present mixer worked with a shorter mixing length, particularly at low Peclet numbers (Pe < 2 x 10(3)).  相似文献   

9.
The interactions of alkali metal cations (Li (+), Na (+), and K (+)) with the cup-shaped molecules, tris(bicyclo[2.2.1]hepteno)benzene and tris(7-azabicyclo[2.2.1]hepteno)benzene have been investigated using MP2(FULL)/6-311+G(d,p)//MP2/6-31G(d) level of theory. The geometries and interaction energies obtained for the metal ion complexation with the cup-shaped systems trindene and benzotripyrrole are compared with the results for benzene-metal ion complexes to examine the effect of ring addition to the benzene on structural and binding affinities. The cup-shaped molecules exhibit two faces or cavities (top and bottom). Except for one of the conformers of tris(7-azabicyclo[2.2.1]hepteno)benzene), the metal ions prefer to bind with the top face over bottom face of the cup-shaped molecules. The selectivity of the top face is due to strong interaction of the cation with the pi cloud not only from the central six-membered ring but also from the pi electrons of rim C=C bonds. In contrast, the metal ions under study exhibit preference to bind with the bottom face rather than top face of tris(7-azabicyclo[2.2.1]hepteno)benzene) when the lone pair of electrons of three nitrogen atoms participates in binding with metal ions. This bottom face selectivity could be ascribed to the combined effect of the cation-pi and strong cation-lone pair interactions. As evidenced from the values of pyramidalization angles, the host molecule becomes deeper bowl when the lone pair of electrons of nitrogen atoms participates in binding with cation. Molecular electrostatic potential surfaces nicely explain the cavity selectivity in the cup-shaped systems and the variation of interaction energies for different ligands. Vibrational frequency analysis is useful in characterizing different metal ion complexes and to distinguish top and bottom face complexes of metal ions with the cup-shaped molecules.  相似文献   

10.
Using Si as the substrate, we have fabricated multiple internal reflection infrared waveguides embedded with a parallel array of nanofluidic channels. The channel width is maintained substantially below the mid-infrared wavelength to minimize infrared scattering from the channel structure and to ensure total internal reflection at the channel bottom. A Pyrex slide is anodically bonded to the top of the waveguide to seal the nanochannels, while simultaneously enabling optical access in the visible range from the top. The Si channel bottom and sidewalls are thermally oxidized to provide an electrically insulating barrier, and the Si substrate surrounding the insulating SiO(2) layer is selectively doped to function as a gate. For fluidic field effect transistor (FET) control, a DC potential is applied to the gate to manipulate the surface charge on SiO(2) channel bottom and sidewalls and therefore their zeta-potential. Depending on the polarity and magnitude, the gate potential can accelerate, decelerate, or reverse the flow. Here, we demonstrate that this nanofluidic infrared waveguide can be used to monitor the FET flow control of charged, fluorescent dye molecules during electroosmosis by multiple internal reflection Fourier transform infrared spectroscopy. Laser scanning confocal fluorescence microscopy is simultaneously used to provide a comparison and verification of the IR analysis. Using the infrared technique, we probe the vibrational modes of dye molecules, as well as those of the solvent. The observed infrared absorbance accounts for the amount of dye molecules advancing or retracting in the nanochannels, as well as adsorbing to and desorbing from the channel bottom and sidewalls.  相似文献   

11.
A modular approach to fabrication of three-dimensional microchannel systems in polydimethylsiloxane (PDMS) is presented. It is based on building blocks with microstructuring on up to three faces. The assembled 3D-microchip consists of three building blocks in two layers. For assembly of the bottom layer two building blocks are joined horizontally, whereby the side structuring of the first is sealed against the flat side surface of the other. This results in the formation of a vertical interconnection opening between the building blocks to supplement the microstructuring on the lower faces. The 3D microchannel system is completed by placing a third building block, with microstructuring only on its lower face, on top of the assembled layer. While plasma assisted bonding is used between the two building blocks of the bottom layer, inherent adhesion is sufficient between the layers and for attaching the assembled 3D-microchip to a substrate. This modular approach was applied to the fabrication of a 3D-sheath flow microchip. It comprises a 20 microm deep microchannel system with sample inlet, open sensing area and outlet in the bottom layer and sheath flow inlet in the top layer. 100 microM fluorescein at 6 microL min(-1) was used as sample flow and water at increasing flow rates as sheath flow. With ratios of sheath to sample flow up to 20:1 sample layers down to 1 microm thickness could be generated. Sample layer thickness was determined via volume detection on an epi-fluorescence microscope followed by image analysis.  相似文献   

12.
We describe a microfluidic cytometer that performs simultaneous optical and electrical characterisation of particles. The microfluidic chip measures side scattered light, signal extinction and fluorescence using integrated optical fibres coupled to photomultiplier tubes. The channel is 80 μm high and 200 μm wide, and made from SU-8 patterned and sandwiched between glass substrates. Particles were focused into the analysis region using 1-D hydrodynamic focusing and typical particle velocities were 0.1 ms(-1). Excitation light is coupled into the detection channel with an optical fibre and focused into the channel using an integrated compound air lens. The electrical impedance of particles is measured at 1 MHz using micro-electrodes fabricated on the channel top and bottom. This data is used to accurately size the particles. The system is characterised using a range of different sized polystyrene beads (fluorescent and non-fluorescent). Single and mixed populations of beads were measured and the data compared with a conventional flow cytometer.  相似文献   

13.
Electroosmosis on nonuniformly charged surfaces often gives rise to intriguing flow behaviors, which can be utilized in applications such as mixing processes and designing micromotors. Here, we demonstrate nonuniform electroosmosis induced by electrochemical reactions. Water electrolysis creates pH gradients near the electrodes that cause a spatiotemporal change in the wall zeta potential, leading to nonuniform electroosmosis. Such nonuniform EOFs induce multiple vortices, which promote the continuous accumulation of particles that subsequently form a colloidal band. The band develops vertically into a “wall” of particles that spans from the bottom to the top surface of the chamber. Such a flow-driven colloidal band can be potentially used in colloidal self-assembly and separation processes irrespective of the particle surface properties. For instance, we demonstrate these vortices can promote rapid segregation of soft colloids such as oil droplets and fat globules.  相似文献   

14.
Development of a novel colorimetric indicator pad for detecting aldehydes   总被引:1,自引:0,他引:1  
A colorimetric indicator was developed and a colorimetric indicator pad was fabricated for the rapid detection of aldehydes. The detection pad has two sides: an observation side on top and a barrier on the bottom. The top side contains a reagent which reacts directly with aldehydes to produce a color change, while the bottom side is coated with a double-sided plastic tape barrier to prevent the escape of chemicals. Sensitivity of the indicator pads was determined using the vapor sensitive ASTM F739 technique with the presence of the indicator. A significant indicator color change (yellow to red) occurred about 5 min before the infrared analyzer response of the ASTM method. The chemical principle and reaction characterization of the test are described. The stability and potential interferences of the indicator pad were also examined by directly spiking aldehydes and compounds with other functional groups, respectively, onto the indicator pads. The newly developed aldehyde indicator pad should find utility in detecting aldehydes in both liquid and vapor phases and in collecting aldehyde permeation through PPE for further study.  相似文献   

15.
A combination of the Langmuir-Blodgett and Langmuir-Schaefer techniques has been used to build a 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayer at a Au(111) electrode surface with hydrogen-substituted acyl chains in the top leaflet (solution side) and deuterium-substituted acyl chains in the bottom leaflet (gold side). Polarization modulation infrared reflection-absorption spectroscopy was used to determine changes in the conformation and orientation of the acyl chains of DMPC caused by the incorporation of two selected perfluorinated compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), into the top leaflet of the bilayer. The incorporation of perfluorinated compounds into the DMPC bilayer caused a broadening of the methylene peaks and a shift in the methylene band positions toward higher frequencies. In addition, the tilt angle of the acyl chains decreased in comparison to the tilt angle of a pure DMPC bilayer. The reported tilt angles were smaller upon insertion of PFOS ( approximately 24 degrees ) than in the presence of PFOA ( approximately 30 degrees ). Overall, the results show that the incorporation of the perfluorinated acids has an effect on the bilayer similar to that of cholesterol by increasing the membrane fluidity and thickness due to a decrease in the tilt angle of the acyl chains.  相似文献   

16.
Jeong HE  Suh KY 《Lab on a chip》2008,8(11):1787-1792
We present the effects of oxygen on the irreversible bonding of a microchannel using an ultraviolet (UV) curable material of polyurethane acrylate (PUA). Microchannels were fabricated by bonding a top layer with impressions of a microfluidic channel and a bottom layer consisting of a PUA coating on a glass or a polyethylene terephthalate (PET) film substrate. The resulting channel is a homogeneous conduit of the PUA material. To find optimal bonding conditions, the bottom layer was cured under different oxygen concentration and UV exposure time at a constant UV intensity (10 mW cm(-2)). Our experimental and theoretical studies revealed that the channel bonding is severely affected by the concentration of oxygen either in the form of trapped air or permeated air out of the channel. In addition, an optimal UV exposure time is needed to prevent clogging or non-bonding of the channel.  相似文献   

17.
In this article a novel method for the fabrication of a passive 3D mixer is presented. It has been shown that in CO2 laser ablation of Polymethyl Methacrylate (PMMA), bending and straight cone structures can be fabricated by adjusting the laser scanning parameters. The effect of the bending cones in the flow direction of a fluid is discussed with computer simulation and a passive mixer based on such structures is designed. Bending and straight cones are fabricated on a PMMA substrate using CO2 laser ablation technique. The structure is molded with PDMS to make two half-channels with bending and straight cones extending out of the surface. Two PDMS structures are stacked on top of each other with a certain displacement to fabricate the mixer.  相似文献   

18.
Patterned functionalization can, on the one hand, open the band gap of graphene and, on the other hand, program demanding designs on graphene. The functionalization technique is essential for graphene-based nanoarchitectures. A new and highly efficient method was applied to obtain patterned functionalization on graphene by mild fluorination with spatially arranged AgF arrays on the structured substrate. Scanning Raman spectroscopy (SRS) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) were used to characterize the functionalized materials. For the first time, chemical patterning on the bottom side of graphene was realized. The chemical nature of the patterned functionalization was determined to be the ditopic scenario with fluorine atoms occupying the bottom side and moieties, such as oxygen-containing groups or hydrogen atoms, binding on the top side, which provides information about the mechanism of the fluorination process. Our strategy can be conceptually extended to pattern other functionalities by using other reactants. Bottom-side patterned functionalization enables utilization of the top side of a material, thereby opening up the possibilities for applications in graphene-based devices.  相似文献   

19.
Patterned functionalization can, on the one hand, open the band gap of graphene and, on the other hand, program demanding designs on graphene. The functionalization technique is essential for graphene‐based nanoarchitectures. A new and highly efficient method was applied to obtain patterned functionalization on graphene by mild fluorination with spatially arranged AgF arrays on the structured substrate. Scanning Raman spectroscopy (SRS) and scanning electron microscopy coupled with energy‐dispersive X‐ray spectroscopy (SEM‐EDS) were used to characterize the functionalized materials. For the first time, chemical patterning on the bottom side of graphene was realized. The chemical nature of the patterned functionalization was determined to be the ditopic scenario with fluorine atoms occupying the bottom side and moieties, such as oxygen‐containing groups or hydrogen atoms, binding on the top side, which provides information about the mechanism of the fluorination process. Our strategy can be conceptually extended to pattern other functionalities by using other reactants. Bottom‐side patterned functionalization enables utilization of the top side of a material, thereby opening up the possibilities for applications in graphene‐based devices.  相似文献   

20.
Jun Yang  Li Qi  Yi Chen  Huimin Ma 《中国化学》2012,30(8):1793-1796
In this work, a 3D mixer has been conceived based on the splitting and recombining mechanism with simple topology structure. This mixer can present excellent performance at extremely low Reynolds number, which is very important for the practical use. Further research exhibits that the mixing also can be realized via the chaotic advection that occurred at decreased aspect ratio of channel. Thus, the changeable mechanism of mixer shows potential of being used widely. Meanwhile, mixing process has been confirmed in a fabricated structure. The simulated flow patterns reappear in a scaled‐up mixer and full mixing can be achieved in 8 mm channel length at varied flow rate. Due to the high efficiency and easy fabrication, this 3D mixer possesses great prospect for a large number of microfluidic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号