首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 784 毫秒
1.
界面改性剂对刚性粒子增韧尼龙6熔体流变行为的影响   总被引:4,自引:0,他引:4  
研究了界面改性剂对高岭土增韧尼龙6熔体流变行为的影响,并与硅烷偶联剂KH550进行了比较.结果表明,KH550的加入明显降低了高岭土填充尼龙6熔体的粘度和弹性,而界面改性剂显著地增强了它的粘度和弹性.这一差别应归因于同KH550相比,界面改性剂更有效地增强了高岭土与尼龙6基体之间的界面结合和其自身的回弹性能.同时,界面改性剂的用量对高岭土填充尼龙6流变行为具有很大影响.当界面改性剂的用量为高岭土和尼龙6总量的2%时,界面改性剂在高岭土表面上趋于“饱和”,再增加界面改性剂的用量,对流变行为的影响不大.  相似文献   

2.
制备了一系列具有不同界面状态的聚丙烯 (PP) 硫酸钡 (BaSO4)复合体 .PP BaSO4的界面分别用硅烷、硬脂酸、马来酸酐接枝聚丙烯 (PP g MAH)改性 .研究表明 ,填充体系的熔体粘度和熔体弹性均高于基体 .以硅烷和PP g MAH进行界面改性后 ,PP BaSO4的界面相互作用加强 ,导致复合体系中的熔体粘度和熔体弹性进一步提高 ,同时BaSO4对PP的成核活性提高 .填料用硬脂酸处理后 ,硬脂酸能够在填料粒子表面上形成一个包覆层 ,使粒子与PP的亲和性改善 .同时该包覆层具有润滑作用 ,使得复合体系的熔体粘度和熔体弹性下降 ,并使得该体系中BaSO4的成核活性低于硅烷和处理的体系 .本文探讨了由复合体系的熔体粘度定量比较填充复合体系中聚合物 填料界面相互作用的方法 ,讨论了界面改性对复合体系流变性质和结晶行为影响的机理  相似文献   

3.
聚丙烯混杂复合体系的界面和力学性能   总被引:9,自引:0,他引:9  
从刚性粒子增韧聚合物体系的界面层性质入手,研究了带有柔性分子链界面改性剂包覆的高岭土(Kaolin)刚性粒子增韧的,短切玻纤(GF)增强的聚丙烯(PP)混杂复合体系的微观结构,结晶性质,PP/Kaolin/GF混杂复合材料的加工流动性及力学性能.实验结果表明,所合成的界面改性剂对PP/Kaolin复合材料有显著的增韧效果;加入少量的短切玻纤可以弥补因界面改性剂引入而引起的PP/Kaolin复合材料强度和模量降低的缺点;经界面改性剂包覆的高岭土刚性粒子和短切玻纤同时加入PP,混杂复合后,PP复合材料的冲击韧性大幅度提高,材料的强度和模量不降低.这个结果不仅在较低的Kaolin含量下,而且可在Kaolin含量为50%(wt%)的高填充量下也得以实现  相似文献   

4.
In this study, polypropylene (PP)/thermoplastic polyurethanes (TPU) filled with inorganic intumescent flame retardant expanded graphite (EG) was prepared by melt blending in a twin-screw extruder. The thermal stability, fire retardancy, mechanical properties, and fracture morphology of PP/TPU composites with treated and untreated EG were investigated by thermogravimetric analysis, cone calorimeter, and scanning electron microscope. The results showed that both untreated and treated EG can greatly enhance the thermal stability and fire resistance of polymer matrix materials. Compared with untreated EG, treated EG can further improve the flame retardancy of the composites. For example, treated EG can further reduce the heat release rate, total heat release, and CO emissions of the composites in the combustion. Surface treatment of EG could significantly improve elongation at break and impact strength of PP/TPU/EG composites due to its enhanced interfacial adhesion and the good dispersion of EG particles in the polymer matrix.  相似文献   

5.
界面改性剂在聚丙烯/高岭土二相复合体系中的作用   总被引:27,自引:2,他引:27  
从高岭土(Kaolin)填充聚丙烯(PP)体系的界面分子设计入手,研究了界面改性剂对填料的分散性,聚丙烯基体的结晶行为,填充熔体流变性质以及材料力学性能的影响.结果表明,界面改性剂降低了填料的高表面能,改善了填料分散状况.界面改性剂的加入,填充熔体粘度接近纯聚丙烯数值.经界面改性剂处理后,填充材料缺口悬臂梁冲击强度随填料量的增加而急剧升高,在填料量为30Wt%时,冲击强度达到480J/M,是未处理材料的十二倍,添加至填料量为50wt%时,冲击强度没有明显降低.  相似文献   

6.
李武 《高分子科学》2017,35(5):659-671
Polypropylene(PP) composites containing magnesium oxysulfate whisker(MOSw) or lauric acid(LA) modified MOSw(LAMOSw) were prepared via melt mixing in a torque rheometer. The heterogeneous nucleating effect of LAMOSw was clearly observed in polarized light microscopy(PLM) pictures with the presence of an abundance of small spherulites. MOSw exhibited no nucleation effect and formed a few spherulites with large size. Compared with PP/MOSw composites, PP/LAMOSw exhibited better impact strength, tensile strength and nominal strain at break, ascribing to three possible reasons:(i) more β-crystal PP formed,(ii) better dispersity of LAMOSw in PP matrix and(iii) the plasticizing effect of LA. The results of dynamic mechanical thermal analysis(DMTA) indicated that brittleness of the PP matrix at low temperature was improved by the addition of LAMOSw, while the interfacial interactions between MOSw and PP matrix were actually weakened by LA, as evidenced by the higher tanδ values over the entire range of test temperatures. In terms of the rheological properties of the composites, both the η* and G′ at low frequencies increase with the addition of MOSw or LAMOSw, indicating that the PP matrix was transformed from liquid-like to solid-like. However, a network of whiskers did not form because no plateau was found in the G′ at low frequencies. With low filler content, LAMOSw produced a stronger solid-like behavior than MOSw mainly due to the better dispersion of the LAMOSw in PP matrix. However, for highly-filled composites, the η* of PP/LAMOSw at low frequencies was smaller than that of PP/MOSw composite, since the particleparticle contact effect played a major role.  相似文献   

7.
The electrical conductivity and impact strength of polypropylene(PP)/EPDM/carbon black ternary composites were investigated in this paper. Two processing methods were employed to prepare these ternary composites. One was called one‐step processing method, in which the elastomer and the filler directly melt blended with PP matrix. Another one was called two‐step processing method, in which the elastomer and the filler were mixed first, and then melt blended with pure PP. To get an optimal phase morphology that favors the electrical conductivity and impact strength, controlling the distribution of CB in PP/EPDM blend was a crucial factor. Thus the interfacial tension and the work of adhesion were first calculated based on the measurement of contact angle, and the results showed that CB tended to be accumulated around EPDM phases to form filler‐network structure. Expectably, the filler‐network structure was observed in PP/EPDM/CB(80/20/3) composite prepared by two‐step processing method. The formation of this filler‐network structure decreased the percolation threshold of CB particles in polymer matrix, and the electrical conductivity as well as Izod impact strength of the composite increased dramatically. This work provided a new way to prepare polymer composites with both improved conductivity and impact strength. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Dang  Li  Nai  Xue-ying  Liu  Xin  Zhu  Dong-hai  Dong  Ya-ping  Li  Wu 《高分子科学》2017,35(9):1143-1155
The effects of maleic anhydride-grafted polypropylene(PP-g-MAH) and maleic anhydride-grafted polyolefin elastomer(POE-g-MAH) on interfacial adhesion properties of the polypropylene/magnesium oxysulfate whiskers(PP/MOSw) composites were investigated via mechanical, thermal, ATR-FTIR and rheological tests. Although significant increases in yield strength and Young's modulus were observed in PP-g-MAH treated composites, a sharp decline in these properties was observed in POE-g-MAH treated composites. ATR-FTIR results indicated that esterification occurred between the hydroxyl groups of MOSw and the carbonyls of anhydrides of both compatibilizers but POE-g-MAH was still incompatible with the PP matrix, as verified by the presence of shoulder peaks in DTG curves and numerous voids in SEM micrographs. On the other hand, PP-g-MAH was highly compatible with the PP matrix, as evidenced by the peaks in DTG curves and vague interfaces with wrapped melts on the surface of MOSw. Rheological behaviors also confirmed that introducing PP-g-MAH resulted in a transition from liquid-like to solid-like, which was attributed to the stronger interfacial adhesion between MOSw and the PP matrix. POE-g-MAH treated composites, in contrast to PP-g-MAH, maintained liquidlike rheological behaviors as typical molten polymers. There is likely a MOSw network formed in the PP/15PP-gMAH/15 MOSw composite as suggested by the significant deviation of G′ versus G″ plots and the two crossover frequencies observed in plots of tan? versus frequency.  相似文献   

9.
闫寿科 《高分子科学》2014,32(4):509-518
Matrix/fiber composites of β-form isotactic polypropylene(iPP) matrix and α-iPP or PA6 fibers were prepared by laminating technique under different preparation temperatures. The mechanical properties and interfacial morphologies of these composites were studied by tensile test, optical microscopy and scanning electron microscopy, respectively. The experimental results show that the tensile yield load and tensile modulus of β-iPP/PA6 matrix/fiber systems increased significantly at the expense of elongation at break. These mechanical properties show essentially no dependence on the sample preparation temperature. On the other hand, the mechanical properties of iPP matrix/fiber single polymer composites depend strongly on the sample preparation temperature. At low sample preparation temperature, e.g., 172 ℃, the solid α-iPP fiber induces α-iPP crystallization, leading to the formation of α-iPP transcrystalline layer around the fiber. This results in a remarkable increment of the tensile yield load and tensile modulus. The elongation at break is also much better than that of the iPP/PA6 matrix/fiber system. It reflects a better interfacial adhesion of the single polymer composite compared with the iPP/PA6 composite. At higher sample preparation temperature, e.g., 174 ℃ or 176 ℃, the partial surface melting of the oriented fiber allows interdiffusion of iPP molecular chains in the molten fiber and matrix melt. The penetration of matrix chains into the molten iPP fiber results in some iPP molecular chains being included partially in the recrystallized fiber and the induced β-transcrystalline layers. This kind of configuration leads to an improvement of interfacial adhesion between the fiber and matrix, which causes a simultaneous increase of the tensile yield load, tensile modulus and elongation at break of β-iPP.  相似文献   

10.
碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究   总被引:1,自引:0,他引:1  
将多壁碳纳米管(MWCNTs)和聚苯硫醚(PPS)经过熔融挤出后制备成复合材料切片,并采用熔融纺丝法制得碳纳米管改性聚苯硫醚复合纤维.采用扫描电镜(SEM)、拉曼光谱、示差扫描量热分析(DSC)、动态机械分析(DMA)以及力学性能测试等表征手段研究了复合纤维中碳管的分散状态,与基体的界面作用,复合纤维的结晶性能以及力学性能,从而探讨了聚苯硫醚/碳纳米管复合纤维体系的微观结构与宏观性能之间的关系.研究表明,聚苯硫醚分子结构与碳纳米管之间具有的π-π共轭作用使碳管较为均匀的分散在基体中,界面结合较为紧密.同时熔融纺丝过程中的拉伸作用使碳管进一步解缠并使碳管沿纤维拉伸方向取向.另一方面,拉曼光谱显示拉伸作用有效地增强了界面作用,有利于外界应力的传递.碳管的良好分散以及强的界面作用使复合纤维力学性能得到大幅度的提高,当碳管含量达到5 wt%时,复合纤维的模量有了明显的提高,拉伸强度较纯PPS纤维提高了近220%.  相似文献   

11.
In the present work, a new technique was developed to determine the interfacial properties of two opaque glass fibre/polypropylene (GF/PP) systems via fragmentation tests on single filament model composites. Fragmentation tests usually require the fibre inside the composites to be completely aligned in the loading direction. Since PP matrices are non-transparent, it is not possible to guarantee a priori this condition. Hence, a novel technique was developed to determine the inclination of the filaments embedded in the composites. The fibre–polymer systems were also evaluated by comparing their interfacial properties with the overall mechanical properties determined on pultruded GF/PP composites. The present work shows that the knowledge of the interfacial properties is important, not only to compare alternative fibre/matrix systems, but also to assess whether the level of adhesion in these systems is adequate to fabricate composites with good mechanical properties.  相似文献   

12.
用马来酸酐(MAH)在碳酸钙(CaCO3)表面引入双键,通过原位固相接枝法将聚丙烯蜡(PPW)化学键合在CaCO3表面,制得3种接枝率的CaCO3-MAH-PPW。 将这3种改性CaCO3填充聚丙烯(PP)制备复合材料,研究了PP/CaCO3界面作用对复合材料强度的影响。 结果表明,CaCO3表面经PPW接枝改性后在PP中的分散性提高,与PP相容性变好;随着改性CaCO3表面PPW接枝率的提高,CaCO3与PP之间界面作用逐渐增强。 当PPW接枝率为4.48 mg PPW/g CaCO3时,CaCO3与PP之间的界面作用最强,复合材料拉伸强度下降最小,杨氏模量提升最大,当m(PP)∶m(CaCO3)=100∶50时,杨氏模量达0.86 GPa,是纯PP的1.63倍;而PPW化学接枝率为2.49 mg PPW/g CaCO3时,CaCO3与PP之间的界面作用适中,复合材料缺口冲击强度提升最大,且当m(PP)∶m(CaCO3)=100∶10时,缺口冲击强度达3.91 kJ/m2,是纯PP的1.35倍。  相似文献   

13.
This article reports the studies of photo-oxidative behaviour of polypropylene/maleic anhydride-grafted polypropylene/organic modified montmorillonite (PP/PPgMA/OMMT) composites prepared by two different melt processing methods. Samples of pristine polypropylene (PP) and PP/PPgMA/OMMT composites were prepared in an internal mixer and in a twin screw extruder. The samples were exposed to long wavelength radiations (λ > 300 nm) for the photo-oxidation. The samples were examined by FTIR, X-ray diffraction and microscopy. Similar to the pristine (PP), it is found that the photo-oxidation process in the composites depends on the melt processing conditions, which could cause the deterioration of organic modifier of the clay and the polymer matrix. The new radicals formed in addition to the iron impurities in the montmorillonite accelerate the photo-oxidation.  相似文献   

14.
纳米CaCO_3/相容剂/PP中的界面相互作用研究   总被引:1,自引:0,他引:1  
采用不同相容剂(PP-g-MAH、POE-g-MAH和EVA-g-MAH)制备了不同界面相互作用的纳米CaCO3(CC)/相容剂/PP体系,研究了相容剂/PP和相容剂/CC界面相互作用对PP/CC的结晶形态、结晶行为、熔融特性和力学性能的影响.观察到PP/CC界面相互作用提高PP结晶温度和PP/CC的模量和冲击强度,但降低了屈服强度.相容剂/CC界面相互作用进一步提高了PP/CC的结晶温度.PP/相容剂界面相互作用取决于PP与相容剂相容性.PP/PP-g-MAH相容性高有利于提高PP/CC的异相成核作用和PP/CC屈服强度和模量,但降低冲击强度.PP/POE-g-MAH部分相容对相容剂/CC界面的异相成核作用、PP/CC屈服强度和模量影响不大,可明显提高冲击强度.但PP/EVA-g-MAH不相容导致PP/CC冲击强度明显降低.  相似文献   

15.
In this work, a free-radical grafting method was used to modify multi-walled carbon nanotubes (MWNT) to improve their dispersion in a polymer matrix by use of a compounding technique. By free-radical grafting for in-situ polymerization, MWNT agglomerates are turned into a networked micro-structure, which in turn builds up a strong interfacial interaction with the polymeric matrix during the mixing procedure. Polystyrene (PS)-MWNT with a hairy rod nanostructure were synthesized by in-situ free-radical polymerization of styrene monomer on the surface of MWNT. PS-MWNT/polypropylene (PP) nanocomposites were prepared by melt mixing. The effect of polystyrene-grafted multi-walled carbon nanotube (PS-MWNT) content on the rheological properties of the polypropylene (PP)-based nanocomposites was investigated. Surface characteristics of PS-MWNT were investigated by infrared spectroscopy, Raman spectroscopy (FT-Raman), thermogravimetric analysis, and transmission electron microscopy. The rheological properties of the PS-MWNT/PP composites were confirmed by rheometry. The complex viscosity of the PS-MWNT/polypropylene (PP) nanocomposites increased with increasing PS-MWNT content, primarily because of an increase in the storage modulus G??. In-situ-polymerized PS-MWNT were uniformly distributed in the PP matrix. In addition, the PS-MWNT were interconnected in the PP matrix and then formed PS-MWNT networks, resulting in the formation of a conducting network. Therefore, compared with samples with pristine MWNT, PS-MWNT-reinforced samples have lower conductivity as a resulting of PS grafting on the surface of MWNT.  相似文献   

16.
Microcrystalline cellulose-filled polypropylene (PP) composites and cellulose nanofiber-filled composites were prepared by melt blending. The compounded material was used to evaluate dispersion of cellulose fillers in the polypropylene matrix. Thermogravimetric analysis (TG) and mechanical testing were conducted on composites blended multiple times and the results were compared with single batch melt blended composites. The residual mass, tensile strength, and coefficient of variance values were used to evaluate dispersion of the microcrystalline cellulose fillers in the PP matrix. The potential of using TG to evaluate cellulose nanofiber-filled thermoplastic polymers was also investigated and it was found that the value and variability of residual mass after TG measurements can be a criterion for describing filler dispersion. A probabilistic approach is presented to evaluate the residual mass and tensile strength distribution, and the correlation between those two properties. Both the multiple melt blending and single batch composites manufactured with increased blending times showed improved filler dispersion in terms of variation and reliability of mechanical properties. The relationship between cellulose nanofiber loading and residual mass was in good agreement with the rule of mixtures. In this article, the authors propose to use a novel method for dispersion evaluation of natural fillers in a polymer matrix using TG residual mass analysis. This method can be used along with other techniques such as scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD) for filler dispersion evaluation in thermoplastic composites.  相似文献   

17.
The objectives of this paper are to understand the crystallization behavior of polypropylene(PP)composites with surface modified tetra-needle-shaped zinc oxide whisker(T-ZnOw).T-ZnOw was surface modified with different coupling agents,such as silane coupling agents(KH-550,KH-560)and titanate coupling agent(NDZ-105),in order to improve the compatibility between PP and T-ZnOw.DSC and POM were used to characterize the melt and crystallization behavior and the crystalline structures of the composites,respectively.The results show that the surface modified T-ZnOw acts as a nucleating agent of PP crystallization,depending on the coupling agent used for modification.KH-550 and KH-560 have more apparent role in improving the interfacial interaction than NDZ-105 and induce PP crystallization at higher temperature and with smaller spherulites size.The results also suggest that the crystallization behavior depends on not only the content of coupling agent,but also the content of the surface modified T-ZnOw used in the composites.  相似文献   

18.
聚丙烯/凹凸棒石纳米复合材料的制备与性能研究   总被引:2,自引:0,他引:2  
以聚丙烯(PP)为聚合物基体,天然凹凸棒石(ATP)为无机组分,经过氧化聚乙烯对ATP表面进行包覆处理,用熔融共混的方法制备了PP/ATP纳米复合材料.扫描电镜结果显示,经本方法处理后的ATP在PP基体中分散较为均匀.ATP棒晶簇直径最佳分散尺寸能达到20~40 nm,比未处理ATP在基体中的棒晶簇直径小10 nm以上;XRD测试表明,未处理ATP和处理后的ATP均有使PP晶粒细化的作用,同时不改变PP的α晶型;DSC结果显示,ATP的加入提高了PP的结晶温度和结晶度,说明ATP有一定的成核作用.通过对复合材料的力学性能测试发现,经过处理的ATP制备的复合材料力学性能优于未处理ATP复合材料对PP力学性能的改善.其中ATP与氧化聚乙烯固含量的质量比为2∶1,ATP含量为3 wt%时复合材料力学性能达到最好.缺口冲击强度比纯PP最高提高了83%,提高幅度显著;经过处理的ATP制备的复合材料拉伸强度提高了6%~11%;弯曲强度提高了33%~45%;弯曲模量提高了90%~106%.  相似文献   

19.
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004  相似文献   

20.
The interfacial compatibility of carbon fiber (CF) reinforced composites is the key factor to determine the comprehensive properties of the composites. The sizing agent plays an indispensable role between carbon fibers and matrix resins. Environmentally friendly hydrophilic sizing agent is is a hot research issue to be solved. In this work,the hydrophilic lignin-based sizing agent and carbon fiber reinforced polypropylene (PP) composites are prepared and studied. The lignin is ozonized to increase the reactive group. The obtained lignin reacts with epoxy group to prepare the oxidized organic solvent lignin based epoxy resin(OLBE). OLBE reacts with alcohol amine and carboxylic acid to obtain the hydrophilic lignin-based sizing agent. KH550 is further added to balance the hygroscopicity of sizing agent. Finally,an oxidized organic solvent lignin-based hydrophilic sizing agent(OLBEDK)with excellent stability was prepared. The CF treated with 2. 5% solid content OLBEDK was only 3. 0 mg. The ILSS,Flexural strength,Flexural modulus and Impact strength of CF/PP composites are increased by 50. 8%,34. 2%,53. 7% and 127. 8%, respectively,compared with those of CF/PP composites without sizing. This is attributed to the π-π conjugation between the benzene ring of lignin and the carbon six-membered ring of CF,and the physical entanglement between the alkyl chain of KH550 and the molecular chain of PP,which enhances the interfacial interaction between CF and PP effectively. © 2022, Science Press (China). All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号