首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for analyzing the thermodynamical manifestations of solvophobic effects is proposed on the basis of considering the relationship between the Gibbs energy and solvation enthalpy of nonelectrolytes. It is demonstrated that, for solutions in nonassociated solvents, there is a linear isoequilibrium dependence between them, and the coefficients of linear dependence are almost equivalent for various dissolved substances and solvents. It is determined that the deviations from this dependence observed in the case of associated solvents are always positive, and the consequences of the manifestations of solvophobic effects are considered. The contributions from the solvophobic effect to the Gibbs energy of solvation of various nonpolar compounds in methanol are determined on the basis of a thermodynamic model of solvation suggested earlier. It is shown that in both methanol and aqueous solutions, the values of these contributions correlate linearly with the characteristic molecular volume of the dissolved substance.  相似文献   

2.
One of two fundamental types of solute–solvent intermolecular interactions are the specific interactions, such as hydrogen bonding complexation between solute and solvent. The Gibbs energy of specific interactions is an important quantity that determines rate and equilibrium constants in solutions, but it is difficult to obtain by direct measurement. We proposed equations allowing to determine the contribution of specific interactions to the Gibbs energy of solvation in nonelectrolyte solutions. Applying it for the case of proton donating solutes with one acidic hydrogen atom dissolved in basic solvents, we obtained the values of the Gibbs energies of 1:1 complexation in pure base. These values have been compared with the Gibbs energies of 1:1 complexation in tetrachloromethane. Most of the hydrogen bonds are found to have the same energy in pure base and in CCl4, however, some weakly bound complexes seem to become even more weakened in pure base medium. Suggested method is applicable in a general situation when multiple associates of different stoichiometry and structure are formed.  相似文献   

3.
A method for calculating the Gibbs energy of nonspecific solvation of nonelectrolytes was suggested. The new equation for the Gibbs energy of nonspecific solvation contains one solvent parameter that characterize nonspecific solvent-solute interactions and two experimental Gibbs energies of solvation in two standard solvents. The method is applicable to a wide range of solutes and solvents. It was successfully used to describe some 800 Gibbs energies of solvation for systems without specific solvent-solute interactions.  相似文献   

4.
The division of thermodynamic solvation free energies of electrolytes into contributions from individual ionic constituents is conventionally accomplished by using the single-ion solvation free energy of one reference ion, conventionally the proton, to set the single-ion scales. Thus, the determination of the free energy of solvation of the proton in various solvents is a fundamental issue of central importance in solution chemistry. In the present article, relative solvation free energies of ions and ion-solvent clusters in methanol, acetonitrile, and dimethyl sulfoxide (DMSO) have been determined using a combination of experimental and theoretical gas-phase free energies of formation, solution-phase reduction potentials and acid dissociation constants, and gas-phase clustering free energies. Applying the cluster pair approximation to differences between these relative solvation free energies leads to values of -263.5, -260.2, and -273.3 kcal/mol for the absolute solvation free energy of the proton in methanol, acetonitrile, and DMSO, respectively. The final absolute proton solvation free energies are used to assign absolute values for the normal hydrogen electrode potential and the solvation free energies of other single ions in the solvents mentioned above.  相似文献   

5.
A new method was suggested for estimating the hydrophobic effect of contributions to the Gibbs energies and enthalpies of hydration of hydrocarbons, inorganic gases and rare gases. In accordance with this method the hydrophobic effect contribution to the Gibbs energy was evaluated from the difference between the hydration Gibbs energy of a solute and the non hydrophobic contribution. To estimate the latter value, the known dependence connecting the Gibbs energies of solvation of a solute in a number of aprotic solvents to the Hildebrand solubility parameter for these solvents was used. The non hydrophobic contribution to the Gibbs energy of hydration was calculated for various solutes from such dependences extended to water as solvent. The Hildebrand solubility parameter for water used in the calculation was corrected for the effect of association through hydrogen bonding. This correction was made by subtraction of the water self-association enthalpy from the enthalpy of vaporization of water. The evaluated Gibbs energies of the hydrophobic effect are positive for saturated hydrocarbons, inorganic gases and rare gases and linearly depend on the solute molecular refraction. The hydrophobic contribution to the hydration enthalpies of the solutes was calculated in the same manner as was made to calculate the hydrophobic contribution to Gibbs energies of hydration. Enthalpies of the hydrophobic effect for the solutes under study are negative.  相似文献   

6.
The standard changes in enthalpy during the solvation of 1,4-dioxane in methanol, ethyl acetate, DMF, and acetonitrile were determined from calorimetric data and compared with the literature data for a series of solvents with different polarities. The standard changes in the Gibbs energy during the solvation of 1,4-dioxane in a wide series of solvents were calculated from the activity coefficients reported in the literature. The variation of the solvation functions of low-polar 1,4-dioxane in the series of solvents was found to be consistent with the enthalpy-entropy compensation rule. The results for 1,4-dioxane were compared with those for its open-chain analog and related large cyclic molecules. The electrostatic interactions of the solute with the solvents did not markedly affect the thermodynamic characteristics of ether in media with different polarities, but affected the interaction of the solute with the solvent more significantly. The solvation of the small ring of 1,4-dioxane in aprotic solvents was accompanied by a more significant exothermal effect than in the case of its open-chain analog. The conclusion was drawn that the enthalpies of the formation of hydrogen bonds between 1,4-dioxane and the associated water and chloroform molecules in solution were smaller in magnitude than the bonds of the similar open-chain polyether.  相似文献   

7.
8.
This paper reports thermodynamic data for the transfer of calixarene derivatives and their metal-ion complexes in dipolar aprotic solvents. These data are used to assess the effect of solvation of these compounds on the selective complexation shown by these macrocycles for soft metal cations in different media. Thus, solubilities and derived Gibbs energies of solution of 5,11,17,23-tetra-tert-butyl[25,27-bis(hydroxyl)-26,28-bis(ethylthioethoxy)]calix(4)arene, 1, and 5,11,17,23-tetra-tert-butyl-[25,27-bis(ethylenethanoate)-26,28-bis(ethylthioethoxy)]-calix(4)arene, 2, in various solvents at 298.15 K are reported. Solvation of these ligands in one medium relative to another is analyzed from their standard transfer Gibbs energies using acetonitrile as the reference solvent. These data are combined with transfer enthalpies (derived from standard solution enthalpies obtained calorimetrically) to calculate the corresponding entropies of transfer of these calix(4)arene derivatives from acetonitrile to methanol and N,N-dimethylformamide. As far as the metal-ion salts (silver and mercury) in their free and complex forms are concerned, standard solution enthalpies were determined in acetonitrile, methanol, and N,N-dimethylformamide. These data are used to derive their transfer enthalpies from one medium to another. It is concluded that the extent of complexation of these macrocycles with soft metal cations is controlled by not only the solvation changes that the free cation undergoes in moving from one medium to another but also those for the ligand and its complex cation in these solvents.  相似文献   

9.
Solvophobic effects strongly influence the thermodynamic properties of solutions and are one of the driving forces of self-assembly processes of supramolecular structures. However, the generally accepted definition and a quantitative measure of these effects have so far been absent. Based on the analysis of a large set of experimental data on the thermodynamic functions of solvation in various systems, we propose a qualitative criterion allowing us to judge about whether the solvophobic effects are manifested in the solution or not, and also a method to determine their contributions to the thermodynamic functions of solvation. A feature of the solvophobic effect is a violation of the linear relationship between the Gibbs free energy and the enthalpy of solvation, which is fulfilled for the solutions of different compounds in many non-associated solvents. It is shown that in self-associated solvents the solvophobic effect is observed for any dissolved compounds, including well soluble ones, resulting in an increase in the Gibbs energy of solvation. Previously proposed solvophobicity parameters are considered and compared with our results.  相似文献   

10.
The COSMO cluster-continuum (CCC) solvation model is introduced for the calculation of standard Gibbs solvation energies of protons. The solvation sphere of the proton is divided into an inner proton-solvent cluster with covalent interactions and an outer solvation sphere that interacts electrostatically with the cluster. Thus, the solvation of the proton is divided into two steps that are calculated separately: 1) The interaction of the proton with one or more solvent molecules is calculated in the gas phase with high-level quantum-chemical methods (modified G3 method). 2) The Gibbs solvation energy of the proton-solvent cluster is calculated by using the conductor-like screening model (COSMO). For every solvent, the solvation of the proton in at least two (and up to 11) proton-solvent clusters was calculated. The resulting Gibbs solvation energies of the proton were weighted by using Boltzmann statistics. The model was evaluated for the calculation of Gibbs solvation energies by using experimental data of water, MeCN, and DMSO as a reference. Allowing structural relaxation of the proton-solvent clusters and the use of structurally relaxed Gibbs solvation energies improved the accordance with experimental data especially for larger clusters. This variation is denoted as the relaxed COSMO cluster-continuum (rCCC) model, for which we estimate a 1σ error bar of 10 kJ mol(-1) . Gibbs solvation energies of protons in the following representative solvents were calculated: Water, acetonitrile, sulfur dioxide, dimethyl sulfoxide, benzene, diethyl ether, methylene chloride, 1,2-dichloroethane, sulfuric acid, fluorosulfonic acid, and hydrogen fluoride. The obtained values are absolute chemical standard potentials of the proton (pH=0 in this solvent). They are used to anchor the individual solvent specific acidity (pH) scales to our recently introduced absolute acidity scale.  相似文献   

11.
Abstract We investigated dielectric enrichment, or the preferential interaction between a probe and a polar solvent, using two different fluorophores in binary solvents that will not form strong hydrogen bonds with the probe. The first probe, 6-propionyl( N,N -dimethylamino)naphthalene (PRODAN), undergoes a large change in dipole moment in the excited state. We found that its emission energy varies linearly with the dielectric parameter f(D) [f(D) = 2(D - 1)/(2D + 1)] in acetone/benzene and acetonekyclohexane mixtures. The emission of the second probe, N-acetyl tryptophanamide (NATA), also varies linearly with f (D) in ethylether/acetonitrile solvents. This lack of preferential solvation was further investigated by studies of NATA in acetonitrile/methanol mixtures where hydrogen bonding is possible. We found that NATA-methanol interactions are not energetic enough to give rise to significant preferential solvation. Since preferential solvation does not occur even for weakly hydrogen bonding solvents it is thus highly unlikely that dielectric enrichment, which takes place in the absence of specific interactions, occurs with any frequency. We postulate that previous reports of dielectric enrichment were due to a lack of consideration of changes in f (D) of the solvent.  相似文献   

12.
The Gibbs energies of 2,2′-dipyridyl when transferred from dimethyl sulfoxide to its mixtures with acetonitrile and methanol are determined from the distribution of substance between immiscible phases. It is found that moving from dimethyl sulfoxide to acetonitrile and methanol weakens the solvation of 2,2′-dipyridyl due to a change in the solvation of amino groups and the hydrocarbon substituent, which is reflected in a reduction in the entropy component of the Gibbs energy.  相似文献   

13.
The Gibbs energies of hydration of monoatomic single-charged ions (298.15 K) were calculated based on the previously developed concept about the real thermodynamic properties of single ions. The structural terms of the thermodynamic functions of ion solvation in water and methanol, defining structural changes in the solvent in the near solvation region, were evaluated.  相似文献   

14.
15.
The osmotic coefficients of binary methanol and ethanol solutions of 1-dodecanol and 1-tetradecanol wer measured at 25°C up to 8 mol-kg–1 in methanol and 5.5 mol-kg–1 in ethanol. The activity coefficients of the solute were calculated from Bjerrum's relation. From the osmotic and activity coeficients the excess Gibbs energies of solution as well as the respective partial molar functions of solute and solvent and the virial pair interaction coefficients for the excess Gibbs energies were calculated. In addition, the difference in the Gibbs energy of solvation for the solvent in solution relative to the pure solvent was calculated, as well as the partial molar volumes and excess partial molar volumes of solutes at infinite dilution, and the coefficients of pairwise contributions to the excess volume were determined. The thermodynamic parameters obtained are discussed on the basis of solute-solvent and solute-solute interactions.  相似文献   

16.
Attention is drawn to the need of detailed thermodynamics in calixarene chemistry. The reasons for increasing efforts in this area are underlined and suggestions for new issues to be addressed are given. The solution thermodynamics ofp-tert-butylcalix[n]arenes (n=4, 6, 8) is discussed with particular reference to transfer Gibbs energies which reflect the selective solvation that the tetramer and the octamer undergo in the various solvents. This is followed by recent solution studies on amine-p-tert-butylcalix[n]arene (n=4, 6, 8) in nitrobenzene and in benzonitrile at 298.15 K which indicate the lower acidic character of the tetramer relative to the hexamer and the octamer in these solvents. As an implication of these results, very low conductivities are observed in studies involving the interaction of the former with amines. Thus, thermodynamic studies suggest thatp-tert-butylcalix[4]arene interacts with triethylamine in benzonitrile and in nitrobenzene through hydrogen bonding or ion-pair formation. A thermodynamic cycle is used to investigate the effect associated with the interaction of the amine with the tetramer in these solvents.This paper is dedicated to the commemorative issue on the 50th anniversary of calixarenes.  相似文献   

17.
The Kemp decarboxylation reaction for benzisoxazole-3-carboxylic acid derivatives has been investigated using QM/MM calculations in protic and dipolar aprotic solvents. Aprotic solvents have been shown to accelerate the rates of reaction by 7-8 orders of magnitude over water; however, the inclusion of an internal hydrogen bond effectively inhibits the reaction with near solvent independence. The effects of solvation and intramolecular hydrogen bonding on the reactants, transition structures, and the rate of reaction are elucidated using two-dimensional potentials of mean force (PMF) derived from free energy perturbation calculations in Monte Carlo simulations (MC/FEP). Free energies of activation in six solvents have been computed to be in close agreement with experiment. Solute-solvent interaction energies show that poorer solvation of the reactant anion in the dipolar aprotic solvents is primarily responsible for the observed rate enhancements over protic media. In addition, a discrepancy for the experimental rate in chloroform has been studied in detail with the conclusion that ion-pairing between the reactant anion and tetramethylguanidinium counterion is responsible for the anomalously slow reaction rate. The overall quantitative success of the computations supports the present QM/MM/MC approach, which features PDDG/PM3 as the QM method.  相似文献   

18.
By using the van’t Hoff and Gibbs equations the thermodynamic functions Gibbs free energy, enthalpy, and entropy of solution, were evaluated from solubility data of naproxen (NAP) determined at several temperatures in octanol, isopropyl myristate, chloroform, and cyclohexane, as pure solvents. The water-saturated organic solvents also were studied except cyclohexane. The excess free energy and the activity coefficients of the solutes, and the mixing and solvation thermodynamic quantities were also determined. The NAP solubilities were higher in chloroform and octanol with respect to those obtained in cyclohexane. In addition, by using literature values for NAP aqueous solubility, the thermodynamic functions relative to transfer of this drug from water to organic solvents were also estimated.  相似文献   

19.
The retention behavior and mechanism of methyl, ethyl, propyl, isopropyl, buthyl and isobuthyl benzoates have been studied at different eluent compositions of aqueous mixtures with water-soluble organic solvents (methanol, ethanol, 1-propanol, 2-propanol, acetonitrile (AN), 1,4-dioxane and tetrahydrofuran (THF)) in RPLC. The retention of the solutes is discussed based on the solvent composition, solvent polarity (ETN value), preferential solvation, hydrogen bonding and solvent clusters of the eluents. The smaller ETN values and the larger preferential solvation of the mixed solvent eluted the solutes faster. The IR spectra of HDO suggested that the solvents, except for methanol and ethanol, break the hydrogen bonding between water molecules, resulting in fast elution of the solutes. Based upon the results, we chose an optimum solvent composition for the separation of benzoates and applied it to the determination of the benzoates in clove.  相似文献   

20.
General trends in the variation of thermodynamic parameters of complex formation of crown ethers with d-metal ions in binary nonaqueous solvent mixtures were determined. An equation was proposed for predicting variation of the stability of coordination compounds upon replacement of one nonaqueous solvent by another on the basis of the change in the Gibbs energy of solvation of the central ion. Calculation of the Gibbs energies for the formation of the [Ag18C6]+ ion in acetonitrile and a number of nonaqueous solvents confirmed the predictive ability of the proposed equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号