首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Employing isocratic and gradient-elution high-performance liquid chromatography (HPLC) a number of straight-chain fatty acid esters (decanoate, laurate, myristate, palmitate) of violaxanthin, auroxanthin, lutein, zeaxanthin, isozeaxanthin, and beta-cryptoxanthin, prepared by partial synthesis, have been separated on a C18 reversed-phase column. Several chromatographic conditions were developed that separated a mixture of di-fatty acid esters (dimyristate, myristate palmitate mixed ester, dipalmitate) of violaxanthin, auroxanthin, lutein, and zeaxanthin in a single chromatographic run. Hydroxycarotenoids such as lutein, zeaxanthin, and isozeaxanthin that are not easily separated by HPLC on C18 reversed-phase columns, can be readily separated after derivatization with fatty acids and chromatography of their esters. Chromatographic conditions for optimum separation of carotenoids from various classes are discussed.  相似文献   

2.
Xanthophylls are a major class of photosynthetic pigments that participate in an adaptation mechanism by which higher plants protect themselves from high light stress. In the present work, an ultrafast time-resolved spectroscopic investigation of all the major xanthophyll pigments from spinach has been performed. The molecules are zeaxanthin, lutein, violaxanthin, and neoxanthin. beta-Carotene was also studied. The experimental data reveal the inherent spectral properties and ultrafast dynamics including the S(1) state lifetimes of each of the pigments. In conjunction with quantum mechanical computations the results address the molecular features of xanthophylls that control the formation and decay of the S* state in solution. The findings provide compelling evidence that S* is an excited state with a conformational geometry twisted relative to the ground state. The data indicate that S* is formed via a branched pathway from higher excited singlet states and that its yield depends critically on the presence of beta-ionylidene rings in the polyene system of pi-electron conjugated double bonds. The data are expected to be beneficial to researchers employing ultrafast time-resolved spectroscopic methods to investigate the mechanisms of both energy transfer and nonphotochemical quenching in higher plant preparations.  相似文献   

3.
Absorbance spectra and excitation spectra of chlorophyll a fluoresence were recorded during the light-induced deepoxidation of violaxauthin to zeaxanthin in bean leaves (Phaseolus coccineus) greened under intermittent light. Light minus dark fluorescence excitation difference spectra showed distinct minima at 440, 465, and 500 nm corresponding to maxima in the absorbance difference spectra. Both difference spectra were prevented by the deepoxidase inhibitor dithiothreitol and were inverted when zeaxanthin was epoxidized. The fluorescence excitation difference spectra were successfully modeled by considering the absorbance differences between violaxanthin and zeaxanthin, assuming no energy transfer from the two pigments to chlorophyll a, and accounting for light-induced scattering changes. The pigment stoichiometry and the scattering changes of the simulation were in accordance with experimental data. The results indicate that, in the early stage of leaf development, light absorbed by the cycle pigments violaxanthin and zeaxanthin is not transferred to chlorophyll.  相似文献   

4.
Potato leaf discs were infiltrated in darkness with a buffer of pH 5 containing 100 M ascorbate, resulting in a massive conversion of the carotenoid violaxanthin to zeaxanthin. In vivo measurements of modulated chlorophyll a fluorescence indicated that this treatment (1) caused a marked upward shift of the threshold temperature at which photosystem II denatures and (2) noticeably inhibited the rate of dark reoxidation of the reduced plastoquinone (at low temperature). These changes were not induced in leaves infiltrated with a buffer of pH 5 containing no ascorbate or with 100 mM ascorbate at pH >7.2. The above-mentioned effects were also observed during heat acclimation (34°C for several days) of potato plants and suggested that zeaxanthin interacts with the lipid phase of the thylakoid membranes. Based on those results and the previous data obtained with model systems, it is suggested that the xanthophyll cycle could be a regulatory mechanism adjusting thylakoid membrane fluidity, the significance of which for the photoprotection of the photosynthetic apparatus is discussed.  相似文献   

5.
The use of carotenoids as biologically friendly labels for third harmonic generation (THG) microscopy is demonstrated. Carotenoid containing liposomes are used to label cell structures via liposome cell fusion. The THG microscopy labels, called harmonophores, were characterized by measuring the third-order nonlinear susceptibility (χ((3))) of carotenoids: violaxanthin, neoxanthin, lutein, β-carotene, zeaxanthin, canthaxanthin and astaxanthin. The THG ratio method was used, which is based on measuring the THG intensity from two interfaces using a nonlinear optical microscope. The second hyperpolarizability values of carotenoids were extracted from χ((3)) measurements taking into account the refractive index at fundamental and third harmonic wavelengths. The length dependence of the second hyperpolarizability of conjugated polyenes from 9 to 13 double bonds with varying oxygen functional groups was investigated. It appears that the presence of epoxides can have a higher influence than an additional conjugated double bond. Furthermore, labelling of both Drosophila Schneider 2 cells and Drosophila melanogaster larvae myocytes with β-carotene was achieved. This study demonstrates that THG enhancement by carotenoids can be used for nontoxic in vivo labelling of subcellular structures for third harmonic generation microscopy.  相似文献   

6.
Hydrated thalli of two lichen species--Umbilicaria antarctica and Lasallia pustulata--were exposed to high light (1800 micromol m-2s-1) for 30 min. High light exposure led to a decrease of total glutathione in both species, while de-epoxidation state of xanthophyll cycle pigments and non-photochemical quenching increased. In the subsequent recovery, the values of de-epoxidation state of xanthophyll cycle pigments decreased towards initial values. Glutathione (GSH) was resynthetised slowly. In conclusion, zeaxanthin-related protection is probably more involved than GSH-related protection in short-term response to high light stress in U. antarctica and L. pustulata. Faster recovery from photoinhibition in L. pustulata than U. antarctica is mainly due to faster conversion of zeaxanthin to violaxanthin and larger GSH pool of former species.  相似文献   

7.
Leaves of Secale cereale seedlings were exposed to high light illumination (1200micromolm(-2)s(-1)) and Cd ions at 5 or 50microM concentrations. Influence of these stress factors on violaxanthin cycle pigments content was analysed chromatographically. Chlorophyll a fluorescence induction was used to analyse response of PSII to stress conditions and contribution of light-harvesting complex (LHCII) in non-photochemical quenching of excitation energy. The Cd-induced all-trans violaxanthin isomerization was analysed by HPLC technique in acetonitrile:methanol:water (72:8:3, v/v) solvent mixture. Interestingly, in the control and Cd-treated leaves subjected to high light, photochemical utilization of absorbed energy increased. This indicates plant adaptation to high light stress. In control plants high light caused zeaxanthin formation, however, the presence of Cd in the nutrient solution resulted in reduction of the second step of violaxanthin de-epoxidation process and anteraxanthin accumulation. In this study we have also shown, that non-photochemical quenching can be independent of anteraxanthin and zeaxanthin content. The particular increase in the cis isomers fraction in Cd-treated leaves has been explained in terms of a direct metal-pigment interaction as confirmed by Cd-induced all-trans violaxanthin isomerization in organic solvent, leading to formation of 13-cis, 9-cis and 15-cis isomers.  相似文献   

8.
Acclimation of the photosynthetic apparatus of chlorophyll b-less barley mutant chlorina f2 to low light (100 micromolm(-2)s(-1); LL) and extremely high light level (1000 micromolm(-2)s(-1); HL) was examined using techniques of pigment analysis and chlorophyll a fluorescence measurements at room temperature and at 77 K. The absence of chlorophyll b in LL-grown chlorina f2 resulted in the reduction of functional antenna size of both photosystem II (by 67%) and photosystem I (by 21%). Chlorophyll fluorescence characteristics of the LL-grown mutant indicated no impairment of the utilization of absorbed light energy in photosystem II photochemistry. Thermal dissipation of excitation energy estimated as non-photochemical quenching of minimal fluorescence (SV(0)) was significantly higher as compared to the wild-type barley grown under LL. Despite impaired assembly of pigment-protein complexes, chlorina f2 was able to efficiently acclimate to HL. In comparison with chlorina f2 grown under LL, HL-grown chlorina f2 was characterized by unaffected maximal photochemical efficiency of photosystem II (F(V)/F(M), doubled content of both beta-carotene and the xanthophyll cycle pigments and considerably reduced efficiency of excitation energy transfer from carotenoids to chlorophyll a. The enormous xanthophyll cycle pool size was however associated with reduced SV(0) capacity. We suggest that the substantial part of the xanthophyll cycle pigments is not bound to the remaining pigment-protein complexes and acts as filter for excitation energy, thereby contributing to the efficient photoprotection of chlorina f2 grown under HL.  相似文献   

9.
Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.  相似文献   

10.
Carotenoids in petals of Rosa foetida The petals of Rosa foetida, HERRM ., a species of prime importance in the history of breeding true yellow garden roses, have been analysed for carotenoids for the first time. The following components were identified: β-carotene ( 1 , 4,5%), lutein ( 2 , 8%), zeaxanthin ( 3 , 17,4%), auroxanthin ( 4 , 30,8%), luteoxanthin ( 5 , 21,9%), violaxanthin ( 6 , 9,2%) and neochrome ( 7 , 4,1%). Not identified carotenoids (4,1%) contained probably mutatoxanthin, antheraxanthin and apocarotenals. Thus the brillant yellow colour of R. foetida flowers is due mainly to carotenoid epoxides.  相似文献   

11.
Carotenoid triplet state lifetimes   总被引:1,自引:0,他引:1  
Carotene and xanthophyll triplet lifetimes are found to depend on the concentration of the parent molecule. These results account for some of the variations in carotenoid triplet lifetimes reported previously. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having higher quenching rate constants.  相似文献   

12.
The electronic excited-state behavior of photosystem II (PSII) in Mantoniella squamata, as influenced by the xanthophyll cycle and the transthylakoid pH gradient (delta pH), was examined in vivo. Mantoniella is distinguished from other photosynthetic organisms by two main features namely (1) a unique light-harvesting complex that serves both photosystems I (PSI) and II (PSII); and (2) a violaxanthin (V) cycle that undergoes only one de-epoxidation step in excess light to accumulate the monoepoxide antheraxanthin (A) as opposed to the epoxide-free zeaxanthin (Z). The cells were treated first with high light to induce the delta pH and A accumulation, followed by herbicide-induced closure of PSII traps and a chilling treatment, to sustain and stabilize the delta pH and nigericin-sensitive fluorescence level in the dark. De-epoxidation was controlled with subsaturating concentrations of dithiothreitol (DTT) and was 5-10 times more sensitive to DTT than higher plant thylakoids. The PSII energy dissipation involved two steps: (1) the pH activation of the xanthophyll binding site that was associated with a narrowing and slight attenuation of the main 2 ns (ns = 10(-9) s) fluorescence lifetime distribution; and (2) the concentration-dependent binding of A to the activated binding site yielding a second distribution centered around 0.9 ns. Consistent with the model of Gilmore et al. (1998) (Biochemistry 37, 13,582-13,593), the fractional intensity of the 0.9 ns component depended almost entirely on the A concentration and correlated linearly with the decrease of the steady-state chlorophyll alpha fluorescence intensity.  相似文献   

13.
The main light-harvesting fraction from Pelvetia canaliculata was isolated on a sucrose density gradient from digitonin-solubilized chloroplasts. After further solubilization by dodecyl maltoside, the bulk fraction was separated into two subunits by preparative isoelectric focusing. The more acidic brown fraction was mainly composed of 22 kDa polypeptides having an apparent pI of 4.55. Its pigment composition was very simple, containing chlorophyll (Chi) a, Chi c and fucoxanthin. The in vivo spectral properties of fucoxanthin, namely a shift in light absorption to the green and efficient energy transmission to Chi a, were conserved in this subunit. No xanthophyll associated with photoprotection was found in this band, even when obtained from photoinhibited thalli. The less acidic green band contained predominantly 22 kDa polypeptides that were resolved into numerous components by denaturing isoelectric focusing. Its pigment composition was more complex, containing, in addition, pigments of the so-called xanthophyll cycle. In photoinhibited thalli, about half of the violaxanthin was converted into antheraxanthin and zeaxanthin. All the pigments of the xanthophyll cycle were specifically associated with this subunit, and it may thus have a central role in the thermal dissipation of the absorbed light energy as postulated for light-harvesting complex II isolated from green plants.  相似文献   

14.
Abstract In a study of the relationship between nonphotochemical quenching of fluorescence and the xanthophyll cycle, we show that the diatom Phaeodactylum tricornutum exhibits several interesting characteristics. This xanthophyll cycle consists of only one reversible epoxidating/deepoxidating step (diadinoxanthiddiatoxanthin). Diadinoxan-thin, which increases from 8 to 17 molecules/100 chlorophyll a (Chl a ) during the ageing of the culture, was present as two separate pools, with a portion (of about 5 molecules/100 Chl a) which was never deepoxidated. Under a defined irradiance, the time necessary to abolish net photosynthesis increases with the pool size of diadinoxanthin available for deepoxidation. A close correlation is found between nonphotochemical quenching and the relative ratio of diatoxanthin until the photosytem II center is inactivated. The photoprotective effect of diadinoxanthin deepoxidation is limited to the phase during which quenching of the minimum fluorescence (F0) develops.  相似文献   

15.
The dissipation of energy as heat is essential for photosynthetic organisms to protect themselves against excess light. We compared Photosystem II florescence changes (non-photochemical quenching, NPQ) in the brown alga Macrocystis pyrifera with that of Ficus sp., a higher plant to examine if the mechanism of heat dissipation (energy-dependent quenching, qE) differs between these evolutionary distant groups of phototrophs. We discovered that M. pyrifera had a slower rise of NPQ upon illumination than the Ficus sp. Further, the NPQ relaxation phase that takes place in the first minutes after light to dark transition is absent in this brown alga. We found that the NPQ induction rate in this alga was 1.5 times faster in preilluminated samples than in dark-adapted samples; this was associated with an increase in the rate of accumulation of the carotenoid zeaxanthin. Therefore, we conclude that NPQ in M. pyrifera is associated only with the formation of zeaxanthin. These results indicate that M. pyrifera lacks the fast component of qE that is related to allosteric changes in the light harvesting complexes of Ficus sp., a representative of higher plants. Although the xanthophyll cycle of this brown alga is similar to that of Ficus sp., yet, the transthylakoid proton gradient (ΔpH) does not influence NPQ beyond the activation of the violaxanthin de-epoxidase enzyme. These findings suggest that NPQ control mechanisms are not universal and we suggest that it may have diverged early in the evolution of different groups of eukaryotic phototrophs.  相似文献   

16.
We performed transient absorption (TA) measurements on CP29 minor light-harvesting complexes that were reconstituted in vitro with either violaxanthin (Vio) or zeaxanthin (Zea) and demonstrate that the Zea-bound CP29 complexes exhibit charge-transfer (CT) quenching that has been correlated with the energy-dependent quenching (qE) in higher plants. Simulations of the difference TA kinetics reveal two-phase kinetics for intracomplex energy transfer to the CT quenching site in CP29 complexes, with a fast <500 fs component and a approximately 6 ps component. Specific chlorophyll sites within CP29 are identified as likely locations for CT quenching. We also construct a kinetic model for CT quenching during qE in an intact system that incorporates CP29 as a CT trap and show that the model is consistent with previous in vivo measurements on spinach thylakoid membranes. Finally, we compare simulations of CT quenching in thylakoids with those of the individual CP29 complexes and propose that CP29 rather than LHCII is a site of CT quenching.  相似文献   

17.
This paper reports the chemical evidence of the balance between radical molecular ions and protonatedmolecules of xanthophylls (an oxygen-containing carotenoid) with a conjugated pi-system (polyene) and oxygen as a heteroatom in ESI and HRESI mass spectrometry. The ionization energy of neutral xanthophylls was calculated by semi-empirical methods. The results were compared with those previously published for carotenoids and retinoids, which have also been shown in ESI-MS to form M(+*) and [M + H](+), respectively. This study demonstrates, for the first time, the correlation of an extended conjugation and the presence of oxygen in the formation and balance of M(+*) or [M + H](+) for the carotenoids, neoxanthin, lutein, violaxanthin and zeaxanthin.  相似文献   

18.
We have used chlorophyll fluorescence, delayed luminescence and thermoluminescence measurements to study the influence of an artificial DeltapH in the presence or absence of zeaxanthin on photosystem II reactions. Energization of the pea thylakoid membranes induced non-photochemical fluorescence quenching and an increase in the overall luminescence emission of PSII during delayed luminescence and thermoluminescence measurements. This DeltapH-induced overall luminescence increase was caused by a strongly enhanced delayed luminescence in the seconds range before sample heating. In the subsequent thermoluminescence measurements the intensity of the B-band decreased after one and increased after two or more single turnover flashes. We propose that strong membrane energization shifted the redox potential of photosystem II radical pairs to more negative values causing the high delayed luminescence. The zeaxanthin-dependent non-photochemical fluorescence quenching component, however, did not alter thermoluminescence B-bands but decreased the delayed luminescence intensity by 30%. To our knowledge this is the first report that the radiative radical pair recombination, exhibited as delayed luminescence but not thermoluminescence emission, is sensitive to the antenna located zeaxanthin related non-photochemical fluorescence quenching. Our data can be interpreted within the frame of the exciton/radical pair equilibrium model that describes photosystem II as a shallow trap and incorporates the transfer of energy from the re-excitated reaction centre to the antenna of photosystem II.  相似文献   

19.
Microalgae have become an important commercial source of carotenoids and microalgae-derived functional foods are consumed by people worldwide. Therefore, an HPLC method was developed to discern the variety and content of carotenoids in the microalga Chlorella pyrenoidosa. The microalga sample was powdered, extracted, saponified and subjected to HPLC analysis. A mobile phase of methanol-acetonitrile-water (84:14:2, v/v/v) (A) and methylene chloride (100%) (B) with the following gradient elution was developed: 100% A and 0% B in the beginning, maintained for 14 min, decreased to 95% A in 25 min, 75% A in 30 min, 74% A in 35 min, 45% A in 50 min and returned to 100% A in 55 min. A total of 32 carotenoids were resolved within 49 min by using a C30 column with flow rate at 1 mL/min and detection at 450 nm. An internal standard beta-apo-8'-carotenal was used to quantify all the carotenoids. All-trans-lutein was present in exceptionally large amount (125034.4 microg/g), followed by cis isomers of lutein (27975.3 microg/g), all-trans-alpha-carotene (2465.8 microg/g), zeaxanthin (2170.3 microg/g), cis isomers of beta-carotene (2159.3 microg/g), all-trans-beta-carotene (2155.0 microg/g), cis isomers of alpha-carotene (1766.7 microg/g), beta-cryptoxanthin (334.9 microg/g), neoxanthin and its cis isomers (199.7 microg/g), neochrome (65.2 microg/g), auroxanthin (38.5 microg/g) and violaxanthin and its cis isomers (38.1 microg/g).  相似文献   

20.
Two artificial photosynthetic antenna models consisting of a Si phthalocyanine (Pc) bearing two axially attached carotenoid moieties having either 9 or 10 conjugated double bonds are used to illustrate some of the function of carotenoids in photosynthetic membranes. Both models studied in toluene, methyltetrahydrofuran, and benzonitrile exhibited charge separated states of the type C*+-Pc*- confirming that the quenching of the Pc S1 state is due to photoinduced electron transfer. In hexane, the Pc S1 state of the 10 double bond carotenoid-Pc model was slightly quenched but the C*+-Pc*- transient was not spectroscopically detected. A semiclassical analysis of the data in hexane at temperatures ranging from 180 to 320 K was used to demonstrate that photoinduced electron transfer could occur. The model bearing the 10 double bond carotenoids exhibits biexponential fluorescence decay in toluene and in hexane, which is interpreted in terms of an equilibrium mixture of two isomers comprising s-cis and s-trans conformers of the carotenoid. The shorter fluorescence lifetime is associated with an s-cis carotenoid conformer where the close approach between the donor and acceptor moieties provides through-space electronic coupling in addition to the through-bond component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号