首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectroscopy has been applied to the study of the reduction of carbon dioxide and of formate and carbonate ions at a silver electrode. Raman spectra of adsorbed intermediate species, which are as yet only partially identified, have been detected and show marked variations with electrode potential. These spectral variations are clearly correlated with the voltammetric features for carbonate solutions and suggest that these reduction products complicate most measurements on silver electrodes in the cathodic region. The interpretation of the previously reported spectra due to adsorbed pyridine at silver electrodes has been reconsidered; interactions with surface carboxy species may be significant.  相似文献   

2.
The determination of film thickness is of prime importance in the quality assurance of coated pharmaceutical preparations. The rapid measurement of this parameter is problematic for multi-particulate pellet systems. The aim of this study was to apply the Raman spectroscopic method for the determination of the thickness of polymer coating on pellets. The change of Raman intensity was compared with measured film thickness, which was calculated from the change of the geometric parameters of the pellets, measured with an image-analyzing system. The results revealed that despite some difficulties Raman spectroscopy is a suitable method for the fast and accurate determination of film thickness on multi-particulate systems.  相似文献   

3.
Two-dimensional carbon nanowalls (CNWs) were prepared by microwave plasma-enhanced chemical-vapor deposition and scanning electron microscopy was used to observe their morphologies. The Raman observations of different sample orientations and polarizations show that CNWs are well crystallized. Micro-Raman scattering measurements were also carried out with different excitation laser lines (325, 488, 514, 532, and 633 nm). The D band shows a very strong shift of 46.19 cm(-1)eV with excitation laser energy and this has been explained by the double resonance effect. The decreasing intensity ratios IDIG and ID'/IG with increasing laser excitation energy were detected and discussed.  相似文献   

4.
This study reports on a new method characterizing cellulose acetates and determining the contents of acetyl groups within cellulose acetates based on FT Raman spectroscopy. Cellulose acetates exhibiting diverse degrees of substitution ascribed to acetyl groups (DSAc) were obtained after the deacetylation of highly acetylated cellulose, i.e. cellulose diacetate and cellulose triacetate (CTA), with aqueous sodium hydroxide solution or 1,6-hexamethylenediamine (HMDA). After plotting the Raman intensity ratios between the bands at 1,740 and 1,380 cm−1 against the DSAc, a calibration curve with high correlation coefficient of more than 0.99 was obtained. During the deacetylation of highly acetylated cellulose, a by-product—sodium acetate (NaOAc)—forms as the most possible salt among others. In order to determine the content of NaOAc, the mixtures of cellulose acetates and NaOAc were measured with FT Raman spectroscopy. Based on the relationship between the Raman intensity ratios as I929/I1380 and the contents of NaOAc in the mixtures, a calibration curve exhibiting high correlation coefficient of more than 0.99 was generated.  相似文献   

5.
The antimalarial agent mefloquine was investigated using Fourier transform near-infrared (FT NIR) Raman and FT IR spectroscopy. The IR and Raman spectra were calculated with the help of density functional theory (DFT) and a very good agreement with the experimental spectra was achieved. These DFT calculations were applied to unambiguously assign the prominent features in the experimental vibrational spectra. The calculation of the potential energy distribution (PED) and the atomic displacements provide further valuable insight into the molecular vibrations. The most prominent NIR Raman bands at 1,363 cm−1 and 1,434 cm−1 are due to C=C stretching (in the quinoline part of mefloquine) and CH2 wagging vibrations, while the most intense IR peaks at 1,314 cm−1; 1,147 cm−1; and 1,109 cm−1 mainly consist of ring breathings and δCH (quinoline); C–F stretchings; and asymmetric ring breathings, C–O stretching as well as CH2 twisting/rockings located at the piperidine moiety. Since the active agent (mefloquine) is usually present in very low concentrations within the biological samples, UV resonance Raman spectra of physiological solutions of mefloquine were recorded. By employing the detailed non-resonant mode assignment it was also possible to unambiguously identify the resonantly enhanced modes at 1,619 cm−1, 1,603 cm−1 and 1,586 cm−1 in the UV Raman spectra as high symmetric C=C stretching vibrations in the quinoline part of mefloquine. These spectroscopic results are important for the interpretation of upcoming in vitro and in vivo mefloquine target interaction experiments.  相似文献   

6.
Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy have been used to investigate the acetylation of raw cotton samples with acetic anhydride without solvents in the presence of different amounts of 4-dimethylaminopyridine (DMAP) catalyst. This is a continuation of our previous investigation of acetylation of commercial cotton in an effort to develop hydrophobic, biodegradable, cellulosic sorbent materials for cleaning up oil spills. The FTIR data have again provided a clear evidence for successful acetylation. The NMR results further confirm the successful acetylation. The extent of acetylation was quantitatively determined using the weight percent gain (WPG) due to acetylation and by calculating the ratio R between the intensity of the acetyl C=O stretching band at 1740-1745 cm(-1) and the intensity of C-O stretching vibration of the cellulose backbone at about 1020-1040 cm(-1). The FTIR technique was found to be highly sensitive and reliable for the determination of the extent of acetylation. The level of acetylation of the raw cotton samples was found to be much higher than that of cotton fabrics and the previously studied commercial cotton. The variation of the R and WPG with reaction time, amount of DMAP catalyst and different samples of raw cotton is discussed.  相似文献   

7.
The acetylation of commercial cotton samples with acetic anhydride without solvents in the presence of about 5% 4-dimethylaminopyridine (DMAP) catalyst was followed using Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy. This preliminary investigation was conducted in an effort to develop hydrophobic, biodegradable, cellulosic materials for subsequent application in oil spill cleanup. The FTIR results provide clear evidence for successful acetylation though the NMR results indicate that the level of acetylation is low. Nevertheless, the overall results indicate that cotton fibres are potential candidates suitable for further development via acetylation into hydrophobic sorbent materials for subsequent oil spill cleanup application. The results also indicate that de-acetylation, the reverse of the equilibrium acetylation reaction, occurred when the acetylation reaction was prolonged beyond 3 h.  相似文献   

8.
Micro-Raman spectra of a series of amphiboles have allowed an analysis of the cation distributions to be made. In addition, the micro-infrared absorption spectrum of Cummingtonite, one mineral in the series, has made possible the determination of both principal and interaction OH force constants. The results are interpreted in terms of the electronegativities of the cations occupying nearby sites.  相似文献   

9.
The nature of interactions between naphthalene and octafluoronaphthalene in the C10H8:C10F8 crystalline complex is studied by Raman spectroscopy. Phonon bands are examined within the framework of our previously proposed sublattice and giant molecule models to derive information regarding the strength of the interactions. To investigate the specific nature of these interactions, a comparative study is made of the internal vibrations observed in the C10H8:C10F8 complex with those found in pure one component crystals. The result obtained indicates that although naphthalene and octafluoronaphthalene weakly interact, specific electrostatic polarization interactions do exist in the C10H8:C10F8 crystalline complex.  相似文献   

10.
11.
Raman spectroscopy has been used to investigate ethane, propane, and SF6 interactions with an aligned multiwalled carbon nanotube (MWNT) membrane. Pressures of 7.5-9.3 atm and temperatures of 293-333 K were examined for propane and SF6, whereas slightly lower temperatures (263-293 K) and pressures (6.7-7.5 atm) were used for ethane. Red-shifting and broadening is seen for the C-C stretching vibrations of the two hydrocarbons, as well as for the A1g symmetric vibration (nu1) of SF6. These spectral features indicate that the interaction between the gas and the nanotube membrane is capable of perturbing molecular vibrations and creating red-shifted features. Control experiments done on polycrystalline graphite and a polystyrene blank indicate that this spectral behavior is unique to gases interacting with the nanotubes in the membrane.  相似文献   

12.
This study describes the application of Raman spectroscopy to the detection of drugs of abuse and noncontrolled substances used in the adulteration of drugs of abuse on human nail. Contamination of the nail may result from handling or abusing these substances. Raman spectra of pure cocaine hydrochloride, a seized street sample of cocaine hydrochloride (77%), and paracetamol could be acquired from drug crystals on the surface of the nail. An added difficulty in the analytical procedure is afforded by the presence of a nail varnish coating the nail fragment. By using confocal Raman spectroscopy, spectra of the drugs under nail varnish could be acquired. Spectra of the drugs could be readily obtained nondestructively within three minutes with little or no sample preparation. Raman spectra could be acquired from drug particles with an average size of 5–20 μm. Acquisition of Raman point maps of crystals from both pure and street samples of cocaine hydrochloride under nail varnish is also reported. Figure Raman spectrum and point Raman map of cocaine HCI  相似文献   

13.
Estrogens are a group of steroid compounds found in the human body that are eventually discharged and ultimately end up in sewer effluents. Since these compounds can potentially affect the endocrine system its detection and quantification in sewer water is important. In this study, estrogens such as estrone (E1), estradiol (E2), estriol (E3), and ethynylestradiol (EE2) were discriminated and quantitated using Raman spectroscopy. Simulated Raman spectra were correlated with experimental data to identify unique marker peaks, which proved to be useful in differentiating each estrogen molecules. Among these marker peaks are Raman modes arising from hydroxyl groups of the estrogen molecules in the spectral region 3200–3700 cm−1. Other Raman modes unique to each of the estrogen samples were also identified, including peaks at 1722 cm−1 for E1 and 2109 cm−1 for EE2, which corresponds to their distinctive structures each containing a different set of functional groups. To quantify the components of estrogen mixtures, the intensities of each identifying Raman bands, at 581 cm−1 for E1, 546 cm−1 for E2, 762 cm−1 for E3 and 597 cm−1 for EE2, were compared and normalized against the intensity of a common peak at 783 cm−1. Quantitative analysis yielded most results within an acceptable 20% error.  相似文献   

14.
The crosslinking of functionalized polystyrene resins is often of critical importance in determining resin properties and performance in the application of these materials as membranes and supports. In this investigation model systems are developed for quantifying the infrared and Raman spectroscopic properties of copolymers based on poly(styrene‐co‐divinylbenzene). Analytical curves appropriate for the quantification of para‐ and metasubstituted species and pendant double bonds are reported, and corrections to previously reported spectroscopic assignments and analytical methods are made. The usefulness of these two analytical methods in characterizing radiation‐grafted films and commercial copolymers is compared, and typical characterization results are given. The relative concentrations of the species found in the grafted films are quite different from their concentrations in the grafting solution, and empirical relationships between the two are developed. In addition, the graft composition varies as a function of the base polymer film thickness and type and the penetration depth in the grafted film. Radiation‐grafted films are more highly crosslinked in their near surface regions, and thinner films are more extensively crosslinked. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 59–75, 2004  相似文献   

15.
Raman and IR data for aqueous CdSO4 and (NH4)2SO4 solutions have been recorded over broad concentration and temperature ranges. Whereas the v1-SO 4 2– band profile is symmetrical in (NH4)2SO4 solutions, in CdSO4 solutions a shoulder appears on the high frequency side which increases in intensity with increasing concentration and temperature. The molar scattering coefficient of the v1-SO 4 2– band is the same for all forms of sulfate in (NH4)2SO4 and CdSO4 solutions and is independent of temperature up to 99°C. The high frequency shoulder is attributed to the formation of a contact ion pair [Cd2+OSO 3 2– ] (11 associate). Also the v3-SO 4 2– antisymmetric stretching mode shows a splitting in the CdSO4 solution. Further spectroscopic evidence for contact ion pair formation is provided by IR spectroscopy. No higher associates or anionic complexes are required to interpret the spectroscopic data. The degree of association has been measured as a function of concentration and temperature. The thermodynamic association constant, KA=0.15±0.05 kg-mol–1 at 25°C is estimated from the Raman data by an extrapolation procedure by taking account of the activity coefficients. Values are reported for the activity coefficient of the ion pair. From the Raman temperature dependence studies, the enthalpy of formation for the contact ion pair is estimated to be 10±1 kJ-mol–1.  相似文献   

16.
Endospores and endospore-forming bacteria were studied by Raman spectroscopy. Raman spectra were recorded from Bacillus licheniformis LMG 7634 at different steps during growth and spore formation, and from spore suspensions obtained from diverse Bacillus and Paenibacillus strains cultured in different conditions (growth media, temperature, peroxide treatment). Raman bands of calcium dipicolinate and amino acids such as phenylalanine and tyrosine are more intense in the spectra of sporulating bacteria compared with those of bacteria from earlier phases of growth. Raman spectroscopy can thus be used to detect sporulation of cells by a characteristic band at 1,018 cm–1 from calcium dipicolinate. The increase in amino acids could possibly be explained by the formation of small acid-soluble proteins that saturate the endospore DNA. Large variations in Raman spectra of endospore suspensions of different strains or different culturing conditions were observed. Next to calcium dipicolinate, tyrosine and phenylalanine, band differences at 527 and 638 cm–1 were observed in the spectra of some of the B. sporothermodurans spore suspensions. These bands were assigned to the incorporation of cysteine residues in spore coat proteins. In conclusion, Raman spectroscopy is a fast technique to provide useful information about several spore components. Figure A difference spectrum between Raman spectra of B. licheniformis LMG 7634 cultured for 6 days and 1 day, together with the reference Raman spectrum of calcium dipicolinate  相似文献   

17.
Furfuryl alcohol (FA) is a promising reactive precursor for new materials. FA reaction mechanisms, that is, self-reactions or cross reactions with other substances, can be studied by vibrational spectroscopy. We present a necessary prerequisite for such studies by a Raman spectroscopic and theoretical study of FA in weakly interacting environments. It is the first study of FA vibrational properties based on density functional theory (DFT/B3LYP), and a recently proposed hybrid approach to the calculation of fundamental frequencies, which also includes an anharmonic contribution. FA occupies five different conformational states, each with more than 5% probability, and two of these dominate at T = 298 K. Excluding one frequency, the remaining ones are predicted as a weighted average over the two dominant conformers to a best RMS error of 8 cm(-1) and are qualitatively assigned. The excluded CH stretching mode is underestimated by 65 cm(-1). This may be due to a combination of an insufficient level of theory and the neglect of Fermi interactions for properly describing this type of mode.  相似文献   

18.
The main parameters for precipitation of mixed carbonate materials have been studied by Raman microscopy. These carbonates are compounds of barium, strontium and calcium. It has been shown that the Raman spectrum of a sample is exclusively controlled by its composition, the precipitation parameters do not affect the crystal structure. Even at relatively low levels, the calcium content of a sample can dominate the vibrational frequencies as measured by Raman spectroscopy. Calcium contents greater than 17% show this effect to a considerable degree, and give the broadest or two Raman peaks and thus the least uniform unit cells. The analysis of the lattice modes demonstrates that each Raman shift observed for a mixed carbonate sample corresponds to a specific crystal structure. Some peaks lie within two or three shifts that are observed for different crystal structures.  相似文献   

19.
The mineral giniite has been synthesised and characterised by XRD, SEM and Raman and infrared spectroscopy. SEM images of the olive-green giniite display a very unusual image of pseudo-spheres with roughened surfaces of around 1-10microm in size. The face to face contact of the spheres suggests that the spheres are colloidal and carry a surface charge. Raman spectroscopy proves the (PO4)3- units are reduced in symmetry and in all probability more than one type of phosphate unit is found in the structure. Raman bands at 77K are observed at 3380 and 3186cm-1 with an additional sharp band at 3100cm-1. The first two bands are assigned to water stretching vibrations and the latter to an OH stretching band. Intense Raman bands observed at 396, 346 and 234cm-1are attributed to the FeO stretching vibrations. The giniite phosphate units are characterised by two Raman bands at 1023 and 948cm-1 assigned to symmetric stretching mode of the (PO4)3- units. A complex band is observed at 460.5cm-1 with additional components at 486.8 and 445.7cm-1 attributed to the nu(2) bending modes suggesting a reduction of symmetry of the (PO4)3- units.  相似文献   

20.
First results of experiments on the surface characterization of cellulose derivatives are presented. Different water contents of the surface of microcrystalline cellulose have been investigated by means of Raman spectroscopy, SERS, and environmental scanning electron microscopy (ESEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号