首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO nanostructures of different morphologies were grown in a controlled manner using a simple low-temperature hydrothermal technique. Controlling the content of ethylenediamine (soft surfactant) and the pH of the reaction mixture, nanoparticles, nanorods, and flowerlike ZnO structures could be synthesized at temperatures 80-100 degrees C with excellent reproducibility. High-resolution electron microscopy revealed the well crystalline nature of all the nanostructures with preferential growth along the [002] direction for linear structures. Photoluminescence spectra of the as-grown nanostructures revealed oxygen-vacancy-related defects in them, which could be reduced by air annealing at 250 degrees C. Possible mechanisms for the variation of morphology with synthesis parameters are discussed.  相似文献   

2.
在NaOH溶液中水热合成了CdS纳米棒, 并探讨了NaOH溶液浓度和反应时间对CdS纳米棒形貌及晶体结构的影响及其可能的生长机理和母液循环可行性. 用粉末X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 高分辨透射电子显微镜(HRTEM)和选区电子衍射(SAED)对CdS纳米棒进行了表征, 并考察了其在可见光照射下光催化降解亚甲基蓝的活性. 结果表明, NaOH溶液是形成棒状形貌的关键因素. 在最优实验条件下, 可获得六方纤锌矿结构CdS纳米棒, 直径约200 nm, 长度可达4 μm. 该纳米棒具有良好的可见光光催化活性.  相似文献   

3.
控制实验合成条件,利用溶胶-凝胶法和化学溶液生长法制备出不同形貌的ZnO纳米结构。采用X射线衍射仪(XRD)、扫描电子显微镜( SEM) 以及透射电子显微镜(TEM)等多种测试手段对ZnO纳米结构的微观形态及晶相进行了分析。结果表明:3种ZnO纳米结构形貌虽不同,但均具有Z nO六方纤锌矿晶相结构。ZnO纳米棒和花状ZnO纳米结构为单晶,生长方向均沿(0001)方向。ZnO纳米球则为多晶。  相似文献   

4.
Flute-like porous alpha-Fe2O3 nanorods and branched nanostructures such as pentapods and hexapods were prepared through dehydration and recrystallisation of hydrothermally synthesised beta-FeOOH precursor. Transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction analyses reveal that the nanorods, which grow along the [110] direction, have nearly hollow cavities and porous walls with a pore size of 20-50 nm. The hexapods have six symmetric arms with a diameter of 60-80 nm and length of 400-900 nm. The growth direction of the arms in the hexapod-like nanostructure is also along the [110] direction, and there is a dihedral angle of 69.5 degrees between adjacent arms. These unique iron oxide nanostructures offer the first opportunity to investigate their magnetic and gas sensing properties. The nanostructures exhibited unusual magnetic behaviour, with two different Morin temperatures under field-cooled and zero-field-cooled conditions, owing to their shape anisotropy and magnetocrystalline anisotropy. Furthermore, the alpha-Fe2O3 nanostructures show much better sensing performance towards ethanol than that of the previously reported polycrystalline nanotubes. In addition, the alpha-Fe2O3 nanostructure based sensor can selectively detect formaldehyde and acetic acid among other toxic, corrosive and irritant vapours at a low working temperature with rapid response, high sensitivity and good stability.  相似文献   

5.
A narrow band photoluminescence (PL) emission peak resulting from CdS-Au solid solution was observed when growing one-dimensional nanostructures of CdS via the vapor-liquid-solid mechanism by using Au as the catalyst. This emission peak was located at 680 nm, a wavelength longer than the near band edge emission of CdS at 520 nm, and was shown not to be caused by the usual trap states of CdS which lead to a broad band emission. Here, the one-dimensional nanostructures of CdS were grown in a simple, low-temperature (360 degrees C) metal-organic chemical vapor deposition process with a single source precursor of CdS. Straight nanowires of diameter 50-70 nm and wormlike nanorods of diameter 100-200 nm were obtained. Both the upper and lower portions of the nanorods/nanowires possessed single crystallinity as judged from the corresponding high-resolution transmission electron microscopy images and selected area electron diffraction data. This work demonstrates the feasibility of adjusting PL emission peaks of optoelectronic semiconductors through alloying with metals.  相似文献   

6.
A simple and practical carbothermal chemical vapor deposition route has been developed for the growth of trigonal phase selenium nanowires and nanoribbons. In detail, the mixture of active carbon and selenium was heated for the chemical reaction to occur, followed by thermal evaporation and decomposition into elemental selenium. The as-prepared sample was characterized by X-ray diffraction, transmission electron microscopy, high-resolution electron microscopy, UV-vis absorption, and photoluminescence. The results show that trigonal Se nanowires have uniform diameters ranging from 20 to 60 nm and grow along the [001] direction, with the same growth direction found for nanoribbons. Spectral measurements suggest a large blue shift and two types of electron transition activity. The influences of experimental conditions on morphologies and growth processes are also discussed. This synthetic method should be able to be extended to grow other one-dimensional chalcogens and chalcogenides nanostructures.  相似文献   

7.
Tower-like ZnO submicron- and nanostructures were synthesized by simply evaporating a mixture of Zn and Ga. Scanning electron microscopy and transmission electron microscopy observations showed that the regular hexagonal tower-like structure is likely to be made up in a layer-by-layer fashion and consist of sheets. According to our experiments, the amount of Ga has a large effect on their morphologies. The growth of such tower-like structures is ascribed to the vapor-solid mechanism. The introduction of Ga hinders the growth of ZnO along the [0001] direction, resulting in the formation of the novel tower-like structures. In addition, the photoluminescence of such structures shows a strong green-light emission.  相似文献   

8.
Single-crystalline ZnS nanowires coated with graphitic carbon shells were synthesized by thermal evaporation of a mixture of ZnS and SnS powders in a graphite crucible. As-synthesized ZnS/C nanostructures were characterized using X-ray diffraction, scanning electron microscope, and transmission electron microscopy equipped with an energy-dispersive X-ray spectrometer. The ZnS core nanowires were formed by a Sn-catalytic vapor-liquid-solid process and grew along the [210] directions. Photoluminescence spectrum reveals that the carbon-coated ZnS nanowires have a strong emission band centered at 586 nm and a shoulder band at 645 nm.  相似文献   

9.
氧化锌纳米带的低温无催化热蒸发制备及其表征   总被引:7,自引:0,他引:7  
通过纯锌粉蒸发,在600 ℃无催化条件下成功制备了高质量的不同形貌的ZnO纳米带.该制备方法中控制产物形貌和尺寸的关键是氧、氩及锌蒸气的流速及分压.扫描电镜及高分辩透射电镜观察显示,氧化锌纳米带具有规整光滑及齿状等不同形貌,且皆为单晶,其生长由固-气机理控制.室温光致发光谱表明,齿状氧化锌纳米带在390 nm附近形成紫外发射峰;在455~495 nm时,形成绿光发射峰,该处由4个次级发射峰组成.  相似文献   

10.
Zinc sulfide (ZnS) sheathed zinc (Zn)-cadmium (Cd) nanowire heterojunctions have been prepared by thermal evaporating of ZnS and CdS powders in a vertical induction furnace at 1200 degrees C. Studies found that both the Zn and Cd subnanowires, within a single nanoheterojunction, are single-crystallines with the growth directions perpendicular to the [210] plane, whereas the sheathed ZnS is polycrystalline with a thickness of ca. 5 nm. The Zn/Cd interface structure in the ZnS sheathed Zn-Cd nanowire heterojunctions was thoroughly experimentally studied by high-resolution transmission electron microscopy and theoretically studied using a near-coincidence site lattice (NCSL) concept. The results show that the Cd and Zn have a crystalline orientation relationship as [0001]Zn//[0001]Cd, (10(-)10)Zn//(10(-)10)Cd, (01(-)10)Zn//(01(-)10)Cd, and ((-)1100)Zn//((-)1100)Cd.  相似文献   

11.
This article describes a simple thermal-decomposition/nitridation method for the large-scale synthesis of 1D alpha-Si(3)N(4) nanostructures, such as millimeter-scale microribbons, nanosaws, nanoribbons, and nanowires. These nanostructures are systematically investigated by checking the product deposited at different areas by using powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. Studies show that all these nanostructures have a single-crystalline nature and predominantely grow along the [011] direction. These 1D nanostructures are formed by thermal decomposition, followed by the nitridation of SiO.  相似文献   

12.
Single crystalline tellurium (Te) nanotubes with triangular cross sections were successfully synthesized for the first time by a simple approach of vaporizing tellurium metal and condensing the vapor in an inert atmosphere onto a suitable substrate. Tellurium gas was evaporated by heating at 350 degrees C and was condensed on the Si (100) substrate at 150-200 degrees C, in the downstream of argon (Ar) gas at a flow rate of 25 sccm for 10 min. This led to the production of nanotubes of triangular cross section along with some hexagonal ones. The formation of the nanotubes was highly dependent upon the structure of the substrate surface, Ar gas flow rate, and the deposition temperature. When the substrate is Si (111) or sapphire (0001) or when the argon flow rate is increased to 500 sccm, nanowires and nanorods were exclusively formed. Irrespective of the morphologies, all the observed Te nanostructures grew in a regular [0001] direction. The facile approach to nanotubes with a triangular cross section may facilitate some new applications as well as stimulate theoretical studies pertaining to the stability of this high-energy configuration.  相似文献   

13.
In this research, ultrasound irradiation as a simple method was used to produce boron nanostructures. Reaction conditions such as boron concentration and sonication time show important roles in the size, morphology and growth process of the final products. The boron nanostructures (nanoparticles and nanorods) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, small-angle X-ray scattering and inductively coupled plasma atomic emission spectroscopy techniques. Primary evaluation of results showed that nanoparticles and nanorods of boron successfully have been prepared with 25–40 and 50–100 nm average particle size, respectively. These nanostructures (nanoparticles and nanorods) were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. Thermochemical decomposition behaviors of treated samples were characterized by thermal gravimetric analysis and differential scanning calorimetry techniques. Also, the kinetic parameters of thermal decomposition processes of pure and treated samples were obtained by nonisothermal methods proposed by Kissinger and Ozawa. However, boron nanoparticles with the smallest average particle size (25–40 nm) have the most significant catalytic effect including the decrease in decomposition temperature of AP + B nanocomposite by 100 °C, increase in the heat of decomposition from 580 to 1354 J g?1 and decrease in activation energy from 207 to 110 kJ mol?1.  相似文献   

14.
A novel bat-like ZnO nanostructure was synthesized on the silicon substrate by simple ther-mal evaporation of zinc powders without any catalyst. Each bat-like nanorod ("nanobat") is composed of a hexagonal head, a continuous neck and a thin handle. High-resolution transmission electron microscopy and selected area electron di raction results reveal the single-crystalline feature and the growing direction along [0001] of the nanobat. The vapor-solid mechanism was found suitable to explain the growth process of the nanobat and a schematic model was proposed in detail based on the experimental results.  相似文献   

15.
Semiconducting ZnO hierarchical nanostructure, where ZnO nanonails were grown on ZnO nanowires, has been fabricated under control experiment with a mixture of ZnO nanopowders and Sn metal powders. Sn nanoparticles are located at or close to the tips of the nanowires and the growth branches, serving as the catalyst for the vapor-liquid-solid growth mechanism. The morphology and microstructure of ZnO nanowire and nanonail were measured by scanning electron microscopy and high-resolution transmission electron microscopy. The long and straight ZnO nanowires grow along [0001] direction. ZnO nanonails are aligned radially with respect to the surface the ZnO nanowire. The long axis direction of nanonails forms an angle of ∼30° to the [0001] direction.  相似文献   

16.
1-D ZnO nanorods with different aspect ratios were synthesized by a one-step, hydrothermal method. The ZnO nanorods grow along the [0001] direction to form single crystals. The experimental results reveal that the growth of polar inorganic crystals is sensitive to the reaction solvents.  相似文献   

17.
This article reports on the fabrication of WO(3) nanorods using an efficient straightforward synthetic technique, without a catalyst, and using a single precursor. The thermal dissociation of WO(OMe)(4) at 700 degrees C in a closed Swagelok cell under an air/inert atmosphere yielded W(18)O(49) nanorods. Annealing of W(18)O(49) at 500 degrees C under an air atmosphere led to the formation of pure WO(3) nanorods. The obtained products are characterized by morphological (scanning electron microscopy and transmission electron microscopy), structural (X-ray diffraction analysis, high-resolution scanning electron microscopy, and Raman spectroscopy), and compositional [energy-dispersive X-ray and elemental (C, H, N, S) analysis] measurements. The mechanism of the formation of nonstoichiometric W(18)O(49) nanorods is supported by the measured analytical data and several control experiments.  相似文献   

18.
Starting from a mixture of Zn and BiI3, we grew nanowires and nanoplates on an oxidized Si substrate at relatively low temperatures of 250 and 300 degrees C, respectively. The ZnO nanowires had diameters of approximately 40 nm and grew along the [110] direction rather than the conventional [0001] direction. The nanoplates had thicknesses of approximately 40 nm and lateral dimensions of 3-4 microm. The growth of both the nanowires and nanoplates is dominated by the synergy of vapor-liquid-solid (VLS) and direction conducting. Analysis of photoluminescence spectra suggested that the nanoplates contain more oxygen vacancies and have higher surface-to-volume ratios than the nanowires. The present results clearly demonstrate that the shapes of ZnO nanostructures formed by using BiI3 can be controlled by varying the temperature in the range 250-300 degrees C.  相似文献   

19.
A facile L-cysteine-assisted route was designed for the selectively controlled synthesis of 1D and novel, interesting 3D CdS spherical nanostructures constructed from CdS nanorods (or nanopolypods) in a binary solution. By controlling reaction conditions such as the molar ratio between Cd(OAc)2 and L-cysteine and the volume ratio of the mixed solvents, the synthesis of various 3D architectural structures and 1D wirelike structures in large quantities can be controlled. This is the first reported case of the direct growth of novel 3D self-assemblies of CdS nanorods (or nanopolypods). The morphology, structure, and phase composition of the as-prepared CdS products were examined by using various techniques (X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-resolution TEM, and Raman spectroscopy). On the basis of the results from TEM studies and our analysis, we speculate that in the present synthesis the L-cysteine dominates nucleation growth and the ethylenediamine (en)-dominated, oriented-assembly process. Interestingly, the products obtained show a gradient evolution in color from light-yellow to dark-yellow, which implies that their intrinsic optical properties change, possibly due to variations in their special morphologies and structures. This facile solution-phase L-cysteine-assisted method could be extended for the controlled preparation of other metal chalcogenides nanostructures with complex morphologies.  相似文献   

20.
A facile and eco-friendly sonochemical route to fabricate well-defined dentritic (rotor-like) ZnO nanostructures from 1D ZnO nanorods without alloying elements, templates and surfactants has been reported. Phase and structural analysis has been carried out by X-ray diffraction (XRD) and Fourier Transform Infra-Red (FTIR) spectroscopy, showed the formation of hexagonal wurtzite structure of ZnO. Scanning electron microscopic (SEM) study showed the formation of rotor-like ZnO nanostructure having a central core which is surrounded by side branches nanocones. Transmission electron microscopic (TEM) study showed that these nanocones grow along [0001] direction on the six {01–10} planes of central core ZnO nanorods. A plausible formation mechanism of rotor-like ZnO nanostructures was studied by SEM which indicates that the size and morphology of side branches can be controlled by adjusting the concentration of OH? ions and time duration of growth. The photoluminescence (PL) spectrum of the synthesized rotor-like ZnO nanostructures exhibited a weak ultraviolet emission at 400 nm and a strong green emission at 532 nm recorded at room temperature. The influence of morphology on the origin of green emission was discussed in detail. The results suggested a positive relationship among polar plane, oxygen vacancy and green emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号