首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为了提高二氧化碳气体检测系统的测量空间分辨率并减小系统体积,设计了一种基于2μm激光二极管和Herriott多光程吸收池的高灵敏二氧化碳气体传感器。设计并加工了有效光程为2.6 m的Herriott池来进行光路折叠。使用中心波长为2μm的激光二极管,覆盖二氧化碳分子在4 989.9 cm-1处的较强吸收线。采用波长调制技术减小系统的噪声。此外,为系统加载Kalman滤波技术来进一步提高探测灵敏度。实验结果表明,采用该传感器,系统的探测极限在1 s的积分时间下可达到0.18×10-6,而经过自编程实时Kalman滤波后探测极限可达到0.13×10-6,提高了27%。采用该传感器对室内二氧化碳浓度进行长达8 h的连续监测,并在暨南大学理工学院楼顶进行了24 h的二氧化碳浓度监测,证明了仪器的稳定性。  相似文献   

2.
《光学学报》2010,30(9)
在吸收光谱检测技术中,常利用多次反射池技术增加吸收气体的光程长度,以提高灵敏度,降低检测极限。通过综合传统的多次反射Herriott池和White池的优点,利用White池的三镜光学结构和Herriott池的光路传输原理,设计出了一种新型的长光程多次反射池,其结构简单、外形紧凑、光程可调、性能稳定并且小型化。将研制出的基长20cm、光程范围10~100m可调的新型多次反射池应用于可调谐二极管激光吸收光谱技术中进行一氧化碳气体的探测,结合数字信号处理技术可把现场检测的灵敏度提高到10-6量级。实验结果显示这种新型多次反射池在吸收光谱技术中应用良好,与传统同基长的反射池相比,气体检测灵敏度有了明显的提高。  相似文献   

3.
本文分析了固定波长激光掩星差分吸收技术的优点和不足,介绍了可调谐激光直接吸收光谱技术测量原理.分析了最优波长透过率与信噪比的关系以及测量误差与背景光干扰的关系.根据高灵敏度探测器的工作波长范围,选择了6310.915 cm?1、6310.893 cm?1、6310.890 cm?1、6310.8834 cm?1作为吸收...  相似文献   

4.
光学多通池被广泛应用于吸收光谱气体检测中,用来增加吸收光程,提高探测灵敏度。提出了一种由两块圆型柱面镜构成的光学多通池,其结构紧凑,镜面有效利用率高,相比传统相同基长的多通池可实现的光程有很大的增加。通过调节前后两柱面镜的间距和相对旋转角度,可得到不同的光斑分布,实现不同的光程。实验中使用1.653μm的分布反馈式二极管激光器作为光源,采用直接吸收光谱方法对CH4气体进行了探测,在气体有效吸收光程为13.8 m的情况下,检测极限达到了0.68μmol/mol,并利用该系统实现了大气中的CH4探测。  相似文献   

5.
海气界面CO2测量对于海洋科学研究具有重要意义,在目前的海洋CO2测量仪器中,基于可调谐二极管激光吸收光谱技术(TDLAS)的设备因灵敏度高、环境适应性强等特点受到关注。TDLAS系统的体积和灵敏度通常受限于多次反射腔的大小和光程。针对海洋CO2脱气量小且灵敏度高的测量需求,自主设计了一套微型多次反射腔,用于TDLAS系统的CO2测量。该微型多次反射腔采用两片口径为25.4 mm、焦距为50 mm的球面反射镜,以38 mm的腔长实现了253次反射,获得了约10 m的光程,封装后的样品池体积仅有90 mL。基于该微型多次反射腔搭建了一套直接吸收TDLAS的CO2气体浓度测量系统,通过标准气体对该系统进行了测试,检测限约为26×10-6,不同浓度气体线性相关度R2为99.986%。同时还将该系统与LGR公司生产的便携式温室气体分析仪(UGGA)进行了对比测量,结果表明二者在白天CO2浓度波动较大和夜晚CO2浓度变化较平稳两种情况下均表现出较好的一致性,R2大于97%。实验结果证明了系统性能,下一步将优化试验装置并进行现场应用。  相似文献   

6.
可调谐半导体激光吸收光谱遥测二氧化碳通量的研究   总被引:1,自引:0,他引:1  
可调谐半导体激光吸收光谱技术(TDLAS)具有高分辨率、高灵敏度以及响应时间快等优点.以室温下工作的近红外可调谐半导体激光器为光源,通过波长调制方法对1 578 nm附近CO2气体吸收线的二次谐波信号测量,结合双开放光路技术,实现对不同高度层面700多米长光程范围内CO2气体浓度的快速在线检测.结合大口径闪烁仪测量的莫宁-奥布霍犬长度和特征速度,通过经验公式计算得到CO2气体的通量在-60~60 mg·m-2·s-1范围内波动.实验数据与涡动相关比较表明,两者数据整体变化趋势一致,该方法可以获得较理想的结果.突破了目前对近地面痕量气体通量的监测只能提供局地结果的现象,使大面积范围内痕量气体通量的测量成为可能.  相似文献   

7.
自主设计了低温吸收池其温度可以从室温到100K之间连续调节,在可调节温度区间内可以稳定在任意一个目标温度,温度的稳定性为ΔT<±1K。对低温吸收池内部结构作了详细的说明,并对温度的稳定性进行测试。用于测量1.65μm处甲烷低温吸收光谱,给出6 039.70cm-1处甲烷在296,248,198和176K低温吸收光谱的特性,并根据可调节低温吸收池的温度可调节性测量了甲烷吸收光谱在6 039.657 9cm-1处的自加宽温度依赖系数n。  相似文献   

8.
可调谐半导体激光吸收光谱法监测二氧化碳的通量   总被引:1,自引:0,他引:1  
含碳温室气体浓度增加所加剧的温室效应是气候变化的重要原因,大面积范围内二氧化碳气体通量的测量对于评价各类陆地生态系统对大气中主要温室气体浓度的贡献具有重要的意义。可调谐半导体激光吸收(TDLAS)光谱技术具有高分辨率、高灵敏度以及快速响应等特点,是痕量气体高灵敏快速监测的新方法。文章以可调谐分布反馈半导体激光器作为光源,通过波长调制方法对1.573μm附近二氧化碳气体某一吸收线的二次谐波信号测量,结合激光分束技术,实现对不同高度层面700多米光程范围内二氧化碳气体浓度的快速在线检测。结合大口径闪烁仪测量出来的莫宁-奥布霍夫长度和特征速度,通过公式计算得到一天内二氧化碳气体的通量在-1.5~2.5mg·(m2·s)-1范围内的波动,突破了目前对近地面痕量气体通量的监测只能提供局地结果的状况,使大面积范围内痕量气体通量的测量成为可能。  相似文献   

9.
通过具有高灵敏度、非侵入式等特性的可调谐二极管激光吸收光谱技术对发动机气缸工作过程等高温高压燃烧环境进行实时在线检测,是了解其内部燃烧过程进而研发高效发动机的重要手段之一。作为一种重要的温室气体和化石燃料燃烧的主要产物,二氧化碳对于了解燃烧过程具有重要的意义。为了寻找一种能够对高温高压燃烧过程中的二氧化碳浓度进行快速检测的方法,利用工作在室温条件下的近红外可调谐二极管激光器作为光源,以二氧化碳位于5 006.140 cm-1处的跃迁作为传感谱线,结合固定波长的吸收光谱调制技术,通过该CO2谱线的一次谐波归一化的二次谐波信号峰值实现对高温高压环境中CO2浓度测量,建立了一种可用于高温高压环境下的组份浓度的测量方法,通过实验验证得出该方法在5 atm压力、500 K温度下和10 atm压力、1 000 K温度下对于CO2浓度测量的平均标准偏差为3.99%;另外还对实验中所得CO2直接吸收及二次谐波信号进行了分析,得到了其吸收光谱在高温高压环境下的特性。  相似文献   

10.
采用可连续调谐半导体二极管激光器作为探测光源,将长程多通池吸收光谱、波长调制和谐波探测技术相结合,建立了一套具有高检测灵敏度和高分辨率的测量气态分子光谱及进行微量分析的研究装置.可以测量6.67×102Pa下~10-27 cm-1·(molecule·cm-2)-1的强度,最小可探测吸收达到~10-8.并利用该装置测量了CO2气体在1.31 μm附近的近红外吸收光谱,并用最小二乘法拟合实验数据获得了这一波段谱线的参数.同时测量的谱线参数与HITRAN数据库相比,发现15条数据库上没有报道的弱谱线.  相似文献   

11.
利用可调谐半导体激光吸收光谱(TDLAS)结合平衡差分探测技术测量了1.578 μm附近的CO气体3-0带P(4)跃迁在不同压强和不同浓度下的吸收光谱信号。由于平衡差分探测方法可以有效地抑制激光光强波动、温度漂移和机械振动等共模噪声,从而提高了光谱探测灵敏度。通过与直接吸收信号相比,平衡差分的信噪比提高了3.4倍,探测极限为87 ppmv。测量了浓度为1%压强为40,55,70和85 Torr时的CO气体,结果显示在70 Torr时其光谱信号最强。并且,利用直接吸收和平衡差分技术测量了不同浓度的CO气体在总压强在70 Torr时的光谱信号,发现平衡差分技术光谱强度与浓度的关系线性度符合较好,其测量误差小于5%。为了进一步验证系统的稳定性,连续采集了324 s的光谱信号,最后通过Allan方差分析,发现本实验系统的最佳探测时间为38 s,探测极限为47.8 ppmv。  相似文献   

12.
基于非分散红外(NDIR)技术的土壤剖面二氧化碳浓度的测定   总被引:1,自引:0,他引:1  
为了探索土壤剖面CO2浓度以及不同土壤层(腐殖质H层、A层、B层、C层)土壤呼吸的变化规律,应用非分散红外(NDIR)技术的新方法,持续不间断的测量土壤剖面二氧化碳浓度。实验所用的主要仪器为硅基非分散红外测量仪,能在高湿、高粉尘、污垢及其他恶劣环境中进行光谱数据采集。通过2013年全年光谱测定值的采集,并应用梯度法模型计算不同深度土壤碳通量,同时利用LI-8100碳通量自动监测系统持续监测的土壤碳通量值进行回归分析。结果显示:土壤剖面CO2浓度呈现明显的梯度变化,即随着土壤深度的增加,土壤CO2浓度增大;梯度法模型得出的不同土壤层的土壤呼吸模拟值与实测土壤呼吸值之间具有较好的线性相关,H,A,B,C层的模型预测的决定系数(R2)分别为0.906 9,0.718 5,0.838 2,0.903 0,均方根误差(RMSE)分别为0.206 7,0.104 1,0.015 6,0.009 6。均达到了较好的预测结果,表明该方法对定量分析不同土壤层碳通量是可行的。该方法具有清晰揭示土壤CO2在不同土壤层之间的传输规律,以及有助于分析不同土壤层土壤呼吸特性的优点,能为全球土壤剖面碳通量计算提供基础数据,是一种具有发展前途的传感器。  相似文献   

13.
对TDLAS直接吸收信号进行仿真研究,能够充分了解TDLAS直接吸收的过程以及各个物理参量的变化对吸收信号的影响。首先全面研究分析了TDLAS直接吸收方法的理论基础及算法,给出了基于朗伯-比尔定率的气体吸收线强、吸收截面、浓度、线型函数以及气体总体配分函数等参量的表达式及计算步骤。基于HITRAN光谱数据库,利用MATLAB程序对TDLAS直接吸收过程进行了仿真,计算得到了一定温度、压力、浓度等条件下的吸收谱数据。以H2O为研究对象,仿真了其在各个线型下的吸收谱,并与商用软件Hitran-PC的结果进行比较,结果显示两者在Lorentz线型下的最大误差小于0.5%,在Gauss线型下的最大误差小于2.5%,在Voigt线型下的最大误差小于1%,因此验证了仿真算法及结果的正确性。还对不同压力和温度下ν23谱带H2O的吸收谱进行了仿真,研究了吸收谱随压力和温度变化规律。在低压范围,多普勒展宽占主导,线宽随压力变化很小,而幅度随压力增大而增大,在高压范围,碰撞展宽占主导,线宽随压力增大而增大,而幅度则随压力增大而趋于定值。最后还给出了大气环境温度范围内的温度修正曲线。该研究可以为TDLAS直接吸收方法的实际应用提供理论参考和指导。  相似文献   

14.
基于HITRAN光谱数据库的TDLAS直接吸收信号仿真研究   总被引:1,自引:0,他引:1  
对TDLAS直接吸收信号进行仿真研究, 能够充分了解TDLAS直接吸收的过程以及各个物理参量的变化对吸收信号的影响。首先全面研究分析了TDLAS直接吸收方法的理论基础及算法, 给出了基于朗伯-比尔定率的气体吸收线强、吸收截面、浓度、线型函数以及气体总体配分函数等参量的表达式及计算步骤。基于HITRAN光谱数据库, 利用MATLAB程序对TDLAS直接吸收过程进行了仿真, 计算得到了一定温度、压力、浓度等条件下的吸收谱数据。以H2O为研究对象, 仿真了其在各个线型下的吸收谱, 并与商用软件Hitran-PC的结果进行比较, 结果显示两者在Lorentz线型下的最大误差小于0.5%, 在Gauss线型下的最大误差小于2.5%, 在Voigt线型下的最大误差小于1%, 因此验证了仿真算法及结果的正确性。还对不同压力和温度下ν2+ν3谱带H2O的吸收谱进行了仿真, 研究了吸收谱随压力和温度变化规律。在低压范围, 多普勒展宽占主导, 线宽随压力变化很小, 而幅度随压力增大而增大, 在高压范围, 碰撞展宽占主导, 线宽随压力增大而增大, 而幅度则随压力增大而趋于定值。最后还给出了大气环境温度范围内的温度修正曲线。该研究可以为TDLAS直接吸收方法的实际应用提供理论参考和指导。  相似文献   

15.
基于可调谐半导体激光吸收光谱技术,研制了一种近红外乙炔气体检测系统。通过分析近红外波段乙炔分子的吸收谱线特性,选择了1.534 μm附近乙炔分子的吸收峰作为吸收谱线。该系统主要由分布反馈激光器、激光器驱动器、单光程对射式气室、光电探测模块及数字式锁相放大器构成。为了测试该检测系统的性能,配备了乙炔气体样品并开展了气体检测实验。实验结果显示,该系统的最小检测下限为0.02%;在体积分数为0.02%~1%范围内,二次谐波幅值与乙炔气体浓度呈现出良好的线性关系。通过长达20 h的稳定性实验测试了检测系统稳定性。鉴于近红外波段石英光纤传输损耗很小,可以将气室及光路部分与电路部分分离,从而可以进行远程气体检测,这是基于量子级联激光器、热光源的乙炔检测系统难以实现的。该系统采用了自主研制的分布反馈激光器驱动器和锁相放大器,结构简单,性价比高,便与集成,在工业现场乙炔浓度检测方面有着良好的应用前景。  相似文献   

16.
海洋与大气交换的CO2通量是研究海-气之间碳循环过程及海洋酸化问题的重要指标,其估算方法主要依赖于海水中CO2的测量。可调谐半导体激光吸收光谱(TDLAS)作为一种常用的气体浓度检测技术,因其具有较好的环境适应性、选择性和较高的灵敏度,亦可发挥出水中溶存气体原位测量的潜力。为验证将TDLAS技术应用到海洋中溶存CO2原位探测的可行性,将渗透膜脱气技术与实验室研发的TDLAS气体探测样机相结合,实现了海水中溶存CO2的原位探测。为适应水下的复杂环境,样机整体被设计为铝合金密封舱结构,具有良好的密封性、耐压性与耐腐蚀性。激光光源采用中心波数位于4 990 cm-1的DFB激光器,其波数扫描范围为4 992~4 994.5 cm-1,可覆盖CO2在4 992.51和4 993.74 cm-1的相邻两条吸收谱线。渗透膜采用具有优秀耐压性与透气性的Teflon AF-2400 X,可满足样机在深水区长期探测的目的。为兼顾较高探测灵敏度与较快响应速率双重指标要求,样机采用了一种小型化多次反射式气体吸收池,有效吸收光程可达8 m,内部仅需气体量24 mL,具有良好的吸收特性。在实验室对样机进行校正实验,使用样机对5种不同浓度(202.8×10-6,503×10-6,802×10-6,1 006×10-6和2 019×10-6)的标准CO2气体进行测量,测量值与实际值的线性相关度R2高达99.94%,最大相对误差小于8%,减小了样机误差对测量值的影响。为评估样机长时间工作的稳定性,使用样机对浓度为802×10-6的标准CO2气体进行了30 min的连续测量,平均测量浓度为802.6×10-6,其波动范围仅为10×10-6,样机精度约为0.5%,可满足水中溶存气体探测的要求。选取水深3米的近海码头进行试验,成功获得了24 h水中CO2的典型吸收光谱及浓度时间序列测量结果,验证了样机水下工作的能力与稳定性。通过在东海海域五处不同深度的区域进行现场试验,成功获取溶存CO2的典型吸收光谱,证明了结合渗透膜脱气技术的TDLAS探测样机在30 m以浅水域的工作适应性。  相似文献   

17.
可调谐半导体激光吸收光谱(tunable diode laser absorption spectroscopy,简称为TDLAS)技术具有高灵敏度、快速响应、非接触式、环境适应性强等优点,能够实现燃烧温度、组分浓度、速度等参量的实时动态在线测量。为准确测量高温下的水汽浓度,采用窄带半导体激光器作为光源,结合实验室的高温测量系统,记录了常压下1.39μm附近水汽在773~1 273K温度范围内的吸收光谱,利用多线组合非线性最小二乘法拟合得到高温吸收光谱的吸光度,找出了两条适合高温水汽浓度测量的吸收线7 154.35和7 157.73cm-1,首次提出高温水汽浓度测量的模型求解方法,该方法测得的高温下水汽浓度符合理论推理,浓度测量的标准误差低于0.2%,相对误差低于6%。通过实验验证了该测量方法的可行性。  相似文献   

18.
基于高分辨率傅里叶变换红外太阳吸收光谱可以准确测量大气中二氧化碳的柱总量。基于光谱反演算法中的前向模型,分析了改变前向模型中不同参数和不同天顶角情况下对反演结果的影响及其原因。选取具有代表性的两天的测量光谱,改变前向模型中连续体倾斜量值、内部视场角、零偏置和多普勒效应四个模型参数,观察不同先验模型参数的扰动对二氧化碳测量结果的影响。结果表明,不同模型参数的扰动引起反演的二氧化碳柱平均干空气混合比(XCO2)相对偏差并不一样;不同的测量时间,相同参数扰动引起的二氧化碳含量相对偏差也不同。其中连续体倾斜量值的变化对反演结果的影响最大,其变化引起的相对偏差波动范围在0.1%~0.2%之间;内部视场角、零偏置和多普勒效应的变化对反演结果影响较小,引起的二氧化碳的相对偏差分别在-0.045%~0.02%,-0.045%~0.015%和-0.03%~0.04%之间。最后用二氧化碳反演平均核解释了反演误差来源。研究结果对光谱反演算法中模型参数的设定和提高测量的准确度提供了理论依据。  相似文献   

19.
为了对电厂脱硝过程中逃逸的微量氨气进行在线检测,实验室采用可调谐激光吸收光谱技术对常温常压下以及不同温度下的低浓度氨气进行了测量试验,其中电厂逃逸氨气检测处温度约为650 K。通过分析近红外波段的氨气吸收谱线,并考虑实际测量环境H2O和CO2等浓度很大的气体吸收谱线的干扰,实验选取2.25 μm附近的ν23谱线作为浓度检测谱线。为了验证所选谱线对低浓度NH3的测量能力,实验对H2O,CO2和NH3的吸收谱线进行模拟,发现低浓度NH3受较大浓度的H2O和CO2谱线的干扰较小,尤其是CO2谱线的干扰可以忽略不计,且2.25 μm处谱线强度远远大于通讯波段1.53 μm处的谱线。基于新型Herriott池以及高温管式炉,结合可调谐激光吸收光谱中的直接吸收技术和波长调制技术,实现了对不同温度下超低浓度NH3的高分辨率快速检测。常温常压下其线型函数可以利用洛伦兹线型来近似描述,直接吸收测量技术可以使探测极限降低到0.225×10-6。通过采用简单降噪处理技术如多次平均、简单小波分析等,得到不同温度下的谐波信号与浓度具有良好的线性关系,为采用可调谐激光吸收光谱技术进行现场低浓度逃逸氨气检测提供了很好的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号