共查询到16条相似文献,搜索用时 78 毫秒
1.
高光谱成像的褐土土壤速效钾含量预测 总被引:2,自引:0,他引:2
精细农业变量施肥取决于对农田的土壤养分分布的了解,快速获取土壤信息是实施精细农业的基础。速效钾是土壤肥力的重要参数,是植物生长发育所必需的营养元素。对土壤速效钾含量进行测量,是了解土壤肥力的重要途径,是实现精细农业的必要条件。以山西典型褐土土壤为研究对象,采集农田耕层褐土土壤样品共169份,样品经风干处理,手动捏碎较大的土粒并去除杂质后,未经研磨过筛处理而直接用于土壤近红外高光谱的测量。根据实验室速效钾含量测定结果,将所有土壤样品分为两类:其中速效钾含量低于100 mg·kg-1的样品共144个,随机选取108个作为低含量建模集(Lc),剩余36个作为低含量验证集(Lp);速效钾含量高于100 mg·kg-1的样品共25个,随机选取19个作为高含量建模集(Hc),剩余6个作为高含量验证集(Hp)。其中Lc和Hc统称为所有含量建模集(Tc),Lp和Hp统称为所有含量验证集(Tp)。获取所有土壤样本950~1 650 nm范围内的近红外高光谱图像。分别采用平均光谱曲线(R)、平均光谱曲线的一阶导数(FD)、平均光谱曲线与一阶导数共同建模(R&FD)、平均光谱曲线与一阶导数的乘积(R*FD)、平均光谱曲线与一阶导数的商(R/FD)等五种光谱数据预处理方法,结合偏最小二乘法(PLS),分别对建模集Tc,Lc及Hc建模,然后分别对验证集Tp,Lp及Hp进行验证。结果表明:土壤的平均光谱反射率随速效钾含量的增大呈现先增加后减小的趋势。当速效钾含量低于100 mg·kg-1时,所有波段的光谱反射率随速效钾含量的增加而增加;当速效钾含量在100~200 mg·kg-1之间时,所有波段的光谱反射率均达到最大值。当速效钾含量超过200 mg·kg-1时,950~1 400 nm的光谱反射率急剧减小,但曲线的整体斜率显著增加;且速效钾含量越高,曲线整体斜率越大。当速效钾含量高于100 mg·kg-1时,平均光谱曲线的一阶导数显著增大,且随速效钾含量的增加而增加。该研究建立的PLS模型,可以对整体(所有速效钾含量)和高含量(≥100 mg·kg-1)速效钾进行有效预测,但无法对低含量(≤100 mg·kg-1)速效钾进行预测。建模效果最好的光谱预处理方法为R*FD,其次为FD,R,而R&FD,R/FD预测效果相对较差。最优建模方式为:R*FD结合Tc建模,其PLS主因子个数为2个,RMSEc=29.293,RPDc=4.669,R2c=0.956;对Tp的验证效果为RMSEp=29.438,RPDp=4.740,R2p=0.958;对Hp的验证效果为RMSEp=23.033,RPDp=3.199,R2p=0.915。该模型能够根据土壤速效钾的含量对土壤进行分类:当预测值小于100 mg·kg-1时,表明土壤速效钾含量低于100 mg·kg-1,具体含量不确定;当预测值大于100 mg·kg-1时,预测值则能够很好反映土壤速效钾的真实含量。由于选用的土壤样本未经研磨和过筛处理,因而能够大大缩短样本制备时间,提高预测效率。该研究结果可为近红外高光谱成像应用于褐土土壤除速效钾含量以外其他营养成份的快速预测提供参考。 相似文献
2.
基于高光谱成像技术的长枣不同保藏温度的可溶性固形物含量检测方法 总被引:3,自引:2,他引:1
应用高光谱成像技术对不同保藏温度的灵武长枣的可溶性固形物含量进行预测模型建立。提取图像中感兴趣区域的平均光谱数据,经过不同光谱预处理后,利用连续投影法(SPA)选择特征波长,对4℃冷藏光谱提取13个特征波段(421,426,512,598,641,670,675,723,814,906,944,978,982 nm),对常温保藏光谱提取12个特征波段(425,507,555,598,673,680,685,718,809,910,954,978 nm)。对于MSC处理、MSC+SPA处理、Savitzky-Golay平滑处理和SNV 4种预处理方法,筛选出的最优预处理方法是冷藏采用MSC处理、常温采用MSC+SPA处理。对应这两种最优预处理方法,分别建立偏最小二乘法(PLSR)、支持向量机(SVM)、主成分回归(PCR)3种预测模型。在以上获得的6个预测模型中,得出冷藏、常温保藏的最优模型分别为MSCPLSR模型(R2C:0.852,RMSEC:0.940;R2P:0.857,RMSEP:0.894)和MSC+SPA-PLSR模型(R2C:0.872,RMSEC:0.866;R2P:0.787,RMSEP:1.007)。结果表明:利用高光谱成像技术,结合多种预测模型建立,能够测定不同保藏温度下的灵武长枣可溶性固形物含量,实现对灵武长枣准确快速的无损检测。 相似文献
3.
可见近红外高光谱成像对灵武长枣定量损伤等级判别 总被引:1,自引:0,他引:1
利用可见近红外(Vis-NIR)高光谱成像技术对完好和损伤等级灵武长枣进行快速识别检测.采用定量损伤装置得到损伤Ⅰ,Ⅱ,Ⅲ,Ⅳ和Ⅴ级的灵武长枣,借助高光谱成像系统采集完好长枣和损伤长枣样本高光谱图像.提取感兴趣区域(region of interest,ROI)并计算样本平均光谱值.利用光谱-理化值共生距离算法(SPX... 相似文献
4.
硫代巴比妥酸反应物(TBARS)是表征肉品脂肪氧化程度的主要化学信息.为探究二维相关光谱技术(2DCOS)筛选羊肉中TBARS含量的特征变量的可行性,利用高光谱成像技术结合2DCOS分析建立TBARS含量的快速无损检测方法.采集样本在400~1000 nm的光谱反射图像,通过ENVI 4.8软件在光谱图像上手动设置感兴... 相似文献
5.
铁皮石斛多糖含量的高光谱反演研究 总被引:1,自引:0,他引:1
铁皮石斛是我国传统的中草药,多糖含量是衡量其品质优劣的一个重要指标。主要研究铁皮石斛多糖含量与光谱间的关系,旨在寻找铁皮石斛多糖含量的无损检测方法。研究方法:实验材料选自不同处理铁皮石斛组培苗和不同生长阶段的驯化苗。其中36个样本作为建模样本建立模型,11个样本作为检验样本对模型进行检验。分别采用偏最小二乘回归法和因子分析法建立样本光谱与多糖含量间的关系。结果表明:(1)光谱一阶微分与多糖含量的相关性优于光谱反射率,其中对多糖含量较敏感的波段主要集中在可见光区域。(2)偏最小二乘回归法的模型决定系数最高,但其预测能力较差。因子分析法模型具有较好预测能力,基于光谱反射率因子分析模型和基于光谱一阶微分因子分析模型的相对分析误差分别为2.269和2.305。 相似文献
6.
高光谱成像的土壤剖面水分含量反演及制图 总被引:2,自引:0,他引:2
传统土壤水分的获取方法仅可获得离散的土壤水分点位数据,难以获得剖面上精细且连续的水分含量分布图。研究了野外条件下利用近红外高光谱(882~1 709 nm)成像反演剖面土壤水分含量(SMC),并实现精细制图的可行性。研究剖面位于江苏省东台市,我们利用近红外高光谱成像仪对剖面进行了5天原位连续观测,共采集了280个土样用于烘干法测定SMC。原始高光谱图像经数字量化值(DN)校正、黑白校正、拼接、几何校正、剪切和掩膜等一系列预处理后,提取各采样点的平均光谱反射率。提取光谱(Raw)经吸光度[LOG10(1/R)],Savitzky-Golay平滑(SG)、一阶微分(FD)、二阶微分(SD)、多元散射校正(MSC)和标准正态变量(SNV)转换后,采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)方法建立SMC预测模型,并对比分析不同光谱预处理方法与建模方法组合条件下SMC的预测精度。结果表明,光谱反射率随SMC增加逐渐降低,不同光谱预处理方法的预测精度有所差异,除MSC方法外,同一光谱预处理方法的LS-SVM模型预测精度均高于PLSR模型,并且基于LOG10(1/R)光谱的LS-SVM模型对SMC预测精度最高,其建模集的决定系数(R2c)和均方根误差(RMSEc)分别为0.96和0.65%,预测集的决定系数(R2p)、均方根误差(RMSEp)和相对分析误差(RPDp)分别为0.88,1.05%和2.88。利用最优模型进行剖面SMC的高空间分辨率精细制图,通过比较SMC反演图中提取的预测值与实测值关系发现预测精度较高(R2: 0.85~0.95, RMSE: 0.94%~1.02%),且两者在剖面中的变化趋势基本一致,说明SMC反演图不仅能很好地反映出土壤水分在整个剖面中毫米级的含量分布信息,也可反映出同一位置处不同天数间的含量差异。因此,利用近红外高光谱成像结合优化的预测模型,能够实现土壤剖面SMC的定量预测及精细制图,有助于快速、有效监测田间剖面土壤水分状况。 相似文献
7.
高光谱技术联合归一化光谱指数估算土壤有机质含量 总被引:4,自引:0,他引:4
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。 相似文献
8.
基于高光谱的土壤有机质含量估算研究 总被引:21,自引:0,他引:21
高光谱遥感技术以其光谱分辨率高、波段连续性强、数据丰富的特点,因而在土壤养分研究中得到广泛应用.通过土壤钉机质的高光谱遥感分析,可以充分了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供科学依据.本文基于江西省余江县和泰和县采集的34个红壤土样350~2 500 nm波段的光谱曲线,研究了土壤光谱与土壤有机质含量之间的关系.先对土壤反射率光谱进行两种变换:一阶微分(R')、倒数的对数log(1/R),然后在提取特征吸收波段的基础上,运用多元逐步线性回归法和偏最小二乘回归法建立相应的估算模型,并对模型进行检验.结果表明,偏最小二乘回归法优于多元逐步线性回归法,其建立的高光谱估算模型具有快速估算土壤中有机质含量的潜力. 相似文献
9.
提出了一种利用高光谱成像技术检测三文鱼水分含量并实现其可视化的新方法。采集不同水分含量的共100个鱼肉样本的高光谱图像,并提取样本感兴趣区域(ROI)的平均光谱。75个样本用于建模集,采用连续投影算法对原始光谱提取特征波长,利用提取的特征波长替代原始光谱,采用PLS建立预测模型,对25个预测集样本的水分含量进行预测,预测决定系数(R2)为0.904,预测均方根误差(RMSEP)为1.169%,获得了满意的预测精度。最后,用所建模型对预测集图像上每个像素点的水分含量进行预测,利用Matlab语言编程,三文鱼肉表面不同部位的水分分布采用不同颜色表示,进而实现三文鱼肉水分含量的可视化。结果表明,高光谱成像技术与化学计量学结合可以准确预测鱼肉的水分含量,与图像处理方法结合可以实现预测时间的可视化,能形象、直观地展示出鱼肉的水分含量分布情况,为实现水产品加工的自动化奠定了基础。 相似文献
10.
11.
采用可见-近红外高光谱成像技术结合化学计量学方法检测灵武长枣维生素C(VC)含量,探究一种全新的水果内部成分的快速无损检测方法。采用高效液相色谱法(HPLC)测得长枣的VC含量化学值,可见-近红外高光谱成像系统采集164个灵武长枣400~1 000 nm的高光谱图像,利用ENVI4.8软件提取图像的感兴趣区域(region of interest,ROI),计算其平均光谱,获得光谱值,将化学值与光谱值通过The UnsecramblerX 10.4软件建立模型。利用蒙特卡洛交叉验证法剔除异常值,采用光谱理化值共生距离法(sample set partitioning based on joint x-y distance,SPXY)进行样本划分以提高模型的预测性能;对光谱采用移动平滑(moving average)、中值滤波(median filter)、归一化(normalize)、基线校准(baseline)、多元散射校正(multiple scattering correction,MSC)、去趋势(detrending)和标准正态变量变换(standard normal variate,SNV)等7种方法进行预处理;为进一步减少数据量,降低维度,提高运算速度,使用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)、无信息变量消除算法(uninformative variable elimination ,UVE)和连续投影算法(successive projections algorithm,SPA)提取特征波长,以期实现以少数波段代替全波段;将全波段光谱(full spectrum,FS)以及CARS, UVE和SPA三种方法提取的特征波长分别建立偏最小二乘(partial least squares wavelength regression,PLSR)和支持向量机(support vector machine,SVM)模型,从而确定最优的建模模型。利用蒙特卡洛交叉验证法共剔除7个异常样本,采用SPXY法将剔除异常样本后的157个数据区分为校正集和预测集,校正集中样本个数为117,预测集中样本个数为40。将未经光谱预处理的建模结果与分别经过七种光谱预处理的建模结果相比,选择未经光谱预处理的数据进行后续分析;将未经光谱预处理的光谱值采用CARS,UVE,SPA方法进行提取特征波长,CARS共优选出406,415,487,631,636,655,660,665,670,684,689,694,723,732,747和881 nm下的光谱变量16个,利用CARS提取出的特征波长占总波长的12.8%;UVE共优选出406,415,627,631,636,651,655,660,665,670,675,679,684,689,694,699,703,708,742,747,751,756,761,766,771,775,780,785,790,795,919和924 nm下的32个特征波长,利用UVE提取出的特征波长占总波长的25.6%;SPA共优选出401,665,684 nm三个特征波长,利用SPA提取出的特征波长占总波长的2.4%。将全波段光谱与提取出的特征波长建立PLSR模型和SVM模型,对比模型结果显示UVE-SVM模型最优,其R2c为0.847 1,R2p为0.714 9,说明UVE有效地对光谱进行降维,简化了数据处理过程。本研究对高光谱成像技术在水果领域的应用进行了有益探索,探究了一种全新的灵武长枣VC含量的无损检测方法,相应建立的可见-近红外高光谱模型为其他水果成分的快速检测提供了理论基础。 相似文献
12.
基于高光谱成像技术的多宝鱼肉冷藏时间的可视化研究 总被引:3,自引:0,他引:3
提出了一种应用可见-近红外高光谱成像技术快速无损检测多宝鱼肉冷藏时间并实现其可视化的新方法。采集8种不同冷藏时间的共160个鱼肉样本的高光谱图像,并提取样本感兴趣区域(ROI)的平均光谱。取120个建模集样本的光谱数据与其相应的冷藏时间建立偏最小二乘回归(PLSR)模型,对40个预测集样本的冷藏时间进行预测,预测决定系数(R2)为0.966 2,预测均方根误差(RMSEP)为0.679 9 d,获得了满意的预测精度。最后,用所建模型对预测集图像上每个像素点的冷藏时间加以预测,采用IDL图像编程技术将不同的时间用不同的颜色表示,最终以伪彩图的形式实现多宝鱼肉冷藏时间的可视化。结果表明,高光谱成像技术与化学计量学结合可以准确预测鱼肉的冷藏时间,与图像处理方法结合可以实现预测时间的可视化,能形象、直观地展示出鱼肉的新鲜度状态和分布情况,为实现水产品加工的自动化奠定了基础。 相似文献
13.
水分含量影响干贝的口感、质地等品质特征,而且与其贮存期密切相关。应用高光谱成像与检测技术结合化学计量学方法,实现干贝水分含量的快速检测。实验采用高光谱成像系统采集380~1 030 nm波段范围内的高光谱图像,采集得到6个不同干燥时期共90个干贝样本高光谱图像。提取所有样本感兴趣区域的平均光谱数据,采用连续投影算法(SPA)和权重回归系数法(Bw)分别提取了7个和4个特征波长。基于所提取的特征波长和全波长分别建立光谱数据与水分含量的偏最小二乘回归(PLSR)模型,三种模型分别是SPA-PLSR,Bw-PLSR和PLSR。建模集和预测集相关系数都高于0.95,预测均方根误差都低于10%,三种模型均获得了较好的预测效果,都能很好地预测干贝的水分含量。在所有模型中,SPA-PLSR模型具有较少的波长变量和较高的预测能力(97.28%),因此本文基于SPA-PLSR模型,采用伪彩色图像编程技术实现了干贝图像上每个像素点的水分含量的可视化预测。结果表明,高光谱成像技术结合特征波长提取算法可用于干贝水分含量分布的可视化检测。 相似文献
14.
高光谱成像技术的柑橘植株叶片含氮量预测模型 总被引:11,自引:0,他引:11
氮素是果树生长发育的一种大量必需元素,及时准确地监控果树的氮营养状况,对果树的合理施肥、增产、优化果实品质以及减缓过量施氮引起的水资源污染具有重要意义。利用高光谱成像技术结合多变量统计学方法,建立了柑橘植株叶片的含氮量预测模型。研究步骤为:高光谱扫描、提取平均光谱曲线、预处理原始光谱数据、采用连续投影法提取特征波段和建立含氮量预测模型。从SG平滑、SNV、MSC、1-Der等11种预处理方法中筛选出的较优预处理方法是SG平滑、Detrending和SG平滑-Detrending。对应这三种最优预处理方法,先采用连续投影法挑选出各自的特征波长,然后将各特征波段下的光谱反射率作为偏最小二乘、多元线性回归和反向传播人工神经网络模型的输入,各自建立三个预测模型。从以上获得的9个预测模型中,得出两个最优模型SG平滑-Detrending-SPA-BPNN(Rp:0.851 3,RMSEP:0.188 1)和Detrending-SPA-BPNN(Rp:0.8609,RMSEP:0.159 5)。结果表明,利用高光谱数据测定柑橘叶片含氮量具有可行性。这为实时、准确地监控柑橘植株生长过程中叶片含氮量的变化以及合理科学的氮肥施加提供了一定的理论基础。 相似文献
16.
黄桃碰伤和可溶性固形物高光谱成像无损检测 总被引:1,自引:0,他引:1
黄桃在线分级时,表面损伤和可溶性固形物同时在线检测。损伤和可溶性固形物是评价黄桃品质好坏的重要指标。采用高光谱成像技术,尝试对黄桃损伤和可溶性固形物进行同时检测。利用主成分分析法,首先对高光谱图像进行主成分分析得到最佳PC(principal component)图像,其次根据PC图像中各波长对其贡献率的大小确定最佳特征波长(550和720 nm)并结合二值化,图像掩膜和阈值分割以及相关的图像处理技术对最佳光谱图像进行定性判别。其准确率最高达到94.6%,同时建立偏最小二乘定量回归模型对正常样品SSC(soluble solid content)含量进行预测,通过对模型的不断优化,实现了基于高光谱成像技术对黄桃碰伤和可溶性固形物同时检测。可溶性固形物分选准确率为79.2%。实验结果表明,利用高光谱成像技术可以实现对黄桃碰伤和可溶性固形物同时检测,该研究可以为实际在线分选提供理论依据和参考。 相似文献