首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
《光散射学报》2021,33(1):24-31
本文介绍了基于毛细管的金纳米棒(Au nanorods, AuNRs)与金纳米哑铃(Au nanodumbbells, AuNDs)组装结构,并从灵敏性、均一性和重现性等角度对两种不同纳米单元构筑的基底进行了表面增强拉曼散射(surface-enhanced Raman scattering, SERS)效应比较研究。结果表明,合成前驱体和分散体系均相同基础上调控得到的两种纳米单元在表面配体交换处理与构筑工艺一致前提下的基于毛细管组装,AuNDs较AuNRs组装结构表现出更高的SERS活性,而两者的均一性和重现性相当。通过选择SERS效应相对显著的毛细管基AuNDs组装结构对实际水体中的孔雀石绿进行取样和SERS检测,检测能力达到2×10~(-3)μg/g量级,表明此策略对实际水体中微量孔雀石绿的快速高灵敏检测具有一定的可行性。  相似文献   

2.
采用种子生长法制备了不同长径比的金纳米棒,并通过金硫键的结合在其表面包覆半胱氨酸分子。利用紫外-可见吸收光谱仪,扫描电子显微镜以及拉曼光谱仪等对样品进行分析和表征。实验结果表明金纳米棒产率较高,且一致性较好。表面修饰后的金纳米棒的纵向吸收峰发生蓝移,表明半胱氨酸分子与金纳米棒的结合有助于溶液分散性的提升。以结晶紫为探针分子,随着金纳米棒长径比的增加其拉曼增强效果变强。进一步分析发现,修饰后的金纳米棒的表面增强拉曼光谱的增强效果并未受到影响。通过金纳米棒与半胱氨酸分子牢固的结合,一方面可以提高金纳米棒溶液的分散性与稳定性;另一方面半胱氨酸分子可为金纳米棒修饰其它有机官能团提供了一个牢固的桥梁,有效地拓展了金纳米棒的应用方向。  相似文献   

3.
王向贤  白雪琳  庞志远  杨华  祁云平  温晓镭 《物理学报》2019,68(3):37301-037301
金属纳米颗粒与金属薄膜的复合结构由于其局域表面等离子体和传播表面等离子体间的强共振耦合作用,可作为表面增强拉曼散射(SERS)基底,显著增强吸附分子的拉曼信号.本文提出了一种聚甲基丙烯酸甲酯(PMMA)间隔的90 nm金纳米立方体与50 nm金膜复合结构的SERS基底,通过有限元方法数值模拟,得到PMMA的最优化厚度为15 nm.实验制备了PMMA间隔层厚度为14 nm的复合结构,利用罗丹明6G (R6G)为拉曼探针分子, 633 nm的氦氖激光器作为激发光源,研究了复合结构和单一金纳米立方体的SERS效应,发现复合结构可以使探针分子产生比单一结构更强的拉曼信号.在此基础上,研究了不同浓度金纳米立方体水溶液条件下复合结构中R6G的拉曼光谱.结果表明,当金纳米立方体水溶液浓度为5.625μg/mL的条件下复合结构中R6G的拉曼信号最强,且可测量R6G的最低浓度达10~(–11) mol/L.  相似文献   

4.
5.
高定向石墨表面金纳米粒子和金纳米线的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用真空沉积方法在高定向石墨(HOPG)基底上直接制备了粒径分布较小的金纳米粒子.超高真空扫描隧道显微镜(STM)研究发现,在74℃退火后,表观直径为2.5nm的金纳米粒子在HOPG基底上形成了排列均匀的准一维纳米粒子链,并且此金纳米粒子链结构稳定.在122℃退火后,不同粒径的金纳米粒子在HOPG基底表面上聚合长大形成了准一维金纳米线.这一发现为制备由金粒子组成的有序纳米结构开辟了探索途径.  相似文献   

6.
在pH 2.27的柠檬酸钠-盐酸缓冲溶液中,纳米金对氯金酸-盐酸羟胺生成较大粒径金颗粒这一慢反应具有较强的催化作用。较大粒径金颗粒在600~1 000 nm处有一个较宽的吸收峰。将纳米金标记羊抗人IgG获得免疫纳米金,免疫纳米金也具有相同催化效果。在一定条件下,金标记羊抗人IgG与IgG发生特异性结合生成纳米金免疫复合物。以16 000 rpm速度离心分离获得未反应的纳米金标抗上层溶液。以它作为催化剂催化氯金酸-盐酸羟胺微粒反应,700 nm处的吸光度A700 nm线性降低。其降低值ΔA700 nm与IgG在0.1~10 ng·mL-1范围内呈良好线性关系, 检出限为0.06 ng·mL-1。本法具有灵敏、快速和较高的特异性,用于定量分析人血清IgG,结果满意。  相似文献   

7.
高定向石墨表面金纳米粒子和金纳米线的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
利用真空沉积方法在高定向石墨(HOPG)基底上直接制备了粒径分布较小的金纳米粒子.超高真空扫描隧道显微镜(STM)研究发现,在74℃退火后,表观直径为2.5?nm的金纳米粒子在HOPG基底上形成了排列均匀的准一维纳米粒子链,并且此金纳米粒子链结构稳定.在122℃退火后,不同粒径的金纳米粒子在HOPG基底表面上聚合长大形成了准一维金纳米线.这一发现为制备由金粒子组成的有序纳米结构开辟了探索途径.  相似文献   

8.
表皮生长因子受体(EGFR)是一种肿瘤表面标记性蛋白。本文报道了基于anti-EGFR功能化金纳米棒探针AuNRs probes的表面增强拉曼散射(SERS),用于EGFR阳性肿瘤细胞的检测。通过AuNRs probes上anti-EGFR特异性结合到EGFR阳性癌细胞上,可使修饰于金纳米棒表面的拉曼活性染料4-巯基苯甲酸(4-MBA)位于1 100 cm~(-1)和1 600 cm~(-1)的特征峰强度得到信号增强。该SERS探针由于具有生物兼容性好、细胞拉曼信号稳定、特异性高等优点而具有巨大的临床应用前景。  相似文献   

9.
金纳米空球的合成及其SERS效应   总被引:1,自引:0,他引:1  
本文利用非晶硒溶胶作模板合成了金纳米空球,采用扫描电子显微镜(SEM)、X射线衍射(XRD)及拉曼光谱对其进行了表征,结果显示,所得到的金纳米空球呈多晶结构,粒径约为150 nm,壳层厚度约为25 nm,表面为颗粒状金原子团簇;将金纳米空心球组装到玻碳电极表面,以SCN-作为探针分子,初步探讨了金纳米空球的SERS效应,表明其具有较强的SERS活性。  相似文献   

10.
张然  肖鑫泽  吕超  骆杨  徐颖 《物理学报》2014,63(1):14206-014206
金属纳米粒子对于研究表面等离子体共振具有非常重要的意义,其自组装形成的功能组装体能够展现出更加优异的整体协同性能.本文通过飞秒激光加工对金纳米棒直接进行组装,不引入其它的修饰剂,过程简单、快速(约1 min),不仅保留了金纳米棒表面等离子特性,且可以实现金纳米棒的任意精细图案化.将组装的微纳结构用于微流控芯片表面增强拉曼散射探测,可以得到很好的增强效果,为等离子体器件的制备提供了新的方法.  相似文献   

11.
以商用高灵敏度红外探测器TPS434为研究对象,测量了其灵敏度随温度(280~10 K)、辐射的调制频率、磁场变化(0~6 T)的相关信息。从实验结果得到:TPS434的灵敏度随着温度降低而降低,随辐射的调制频率增加而衰减,但是低温下的衰减速率变缓,说明探测器的弛豫时间变短;热电堆的温差电动势在低温下会随磁场发生线性变化,可以通过线性拟合扣除磁场对测量结果的影响。由实验所得数据估算等效噪声功率NEP以及最小可检测功率Pmin,对TPS434作为THz探测器的可行性进行了分析。  相似文献   

12.
 为了研究磁爆压缩发生器加载下强磁体形成的磁场,对磁爆加载过程进行分析,建立了磁爆加载下强磁体形成磁场的理论模型。按照此模型,对6种不同结构强磁体的磁场进行对比研究,得到了强磁体的磁场变化规律。结果表明:在加载初始阶段,磁爆压缩发生器的自身参数为主要影响因素,各磁体的磁场峰值和范围差别较小;在磁通压缩阶段,电路过程的改变使得磁体结构的影响逐渐显著,各磁体的磁场峰值和范围发生了明显变化;磁体结构对磁场的空间分布具有决定性作用,磁场分布不受加载过程的影响。  相似文献   

13.
本文采用直接冷却和两相模拟两种分子动力学方法,研究了外加磁场液态铁凝固过程的影响并将结果与无外加磁场的计算结果进行对比. 外加磁场对凝固过程的影响主要体现在临界温度、能量和径向分布函数. 计算结果表明,铁液的凝固相变过程主要是发生在1500∽1600 K的温度范围;在外加磁场作用下,液态铁的凝固点有明显减小的趋势. 通过对扩散系数和粘度的进一步分析,在外加磁场的存在下,体系的扩散系数增大而粘度减小,研究显示外磁场驱动的铁液原子涨落较强导致凝固点的降低.  相似文献   

14.
详细研究了磁场退火对于具有不同线间距(30~60 nm)和不同线直径(22~46 nm)的Fe48Co52合金纳米线阵列性能的影响.研究表明,退火过程中沿纳米线方向施加3kOe的磁场对于阵列的最佳退火温度和晶体结构以及线直径较小或线间距较大阵列的磁性能均无明显影响.但是对于具有较大线直径或较小线间距的阵列,这种磁场退火处理限制了其易磁化方向的转动并明显提高了其矫顽力与矩形度.认为不同阵列内部有效各向异性场强度之间所存在的差异是导致磁场退火后阵列磁性能出现不同变化的主要原因.  相似文献   

15.
借助于法拉第磁致旋光效应,以ZF6玻璃为磁旋光介质,设计了适当的光学系统,对永磁体磁极附近磁场的分布进行了光学二维成像.利用自编的图像采集软件采集了一系列原始图片,并利用自编的图像处理软件对这些原始图片进行了处理,完成了检偏过程.分别得到了透射成像方式和反射成像方式下永磁体磁场的分布图像,这些图像正确反映了永磁体磁场的实际分布.本研究工作为宏观尺度磁场的观测与测量提供了一种有效的手段.  相似文献   

16.
The low-temperature properties of disordered solids, such as glasses or crystals with certain substitutional defects are governed by atomic tunneling systems. Until recently it was believed that the dielectric properties of insulating materials devoid of magnetic impurities should not—or only very weakly—depend on external magnetic fields. In contrast, new experiments on glasses and crystalline defect systems show a pronounced magnetic field dependence of the dielectric properties of such materials at ultra-low temperatures. In particular, the low-frequency dielectric susceptibility and the amplitude of polarization echoes appear to be strongly affected by magnetic fields. These very surprising findings clearly indicate that atomic tunneling systems can couple to magnetic fields. We summarize the available data and discuss the possible origin of these intriguing phenomena.  相似文献   

17.
与腔内运行线偏振光的抖动陀螺相比,腔内运行圆偏振光的零闭锁激光陀螺对磁场更为敏感.为了减小零闭锁激光陀螺的磁敏感性,理论分析了其磁敏感特性.当左、右旋陀螺的比例因子修正相等时,陀螺零偏不随磁场的变化而变化,同时陀螺比例因子线性度也将得到改善.试验测试了零闭锁激光陀螺的磁敏感性,结果表明陀螺存在磁不敏感点.试验结果与理论分析吻合.与传统的被动磁屏蔽方法相比,通过主动控制使得零闭锁激光陀螺工作在磁不敏感点的方法对于降低该陀螺的磁灵敏度和提高准确度具有实用价值.  相似文献   

18.
徐源  郭斌  袁月峰 《应用声学》2016,24(9):278-280, 287
对于汽车电子油门踏板利用可编程霍尔传感器将踏板的位置变化转换为线性模拟电压输出,具有产品一致性好、寿命长等优点正越来越获得广泛应用;针对踏板磁钢片位置布局不良容易导致的传感器校准异常和输出非线性等问题,进行了踏板旋转件永磁磁路分析,并用ANSYS软件进行了磁场有限元建模仿真,分析了踏板旋转角度和传感器位置安装之间的影响因素,并在电子油门性能检测平台上进行了实验验证;实验结果表明,双路输出式电子油门踏板的输出线性度达到1.45%,同步度指标为0.12%,符合产品技术标准。  相似文献   

19.
激光引发自由基反应磁效应的光谱学研究   总被引:1,自引:0,他引:1  
“动态自旋化学”(dynamic spin chemistry)作为一门新兴的交叉研究领域,其重要性已得到广泛的共识。涉及的研究内容包括: 化学反应的磁效应(MFE)、同位素效应(MIE)、化学诱导动态核极化(CIDNP)和化学诱导动态电子极化(CIDEP)。文章简要介绍了激光引发自由基反应的磁效应发展历史及其光谱学研究方法。分析并总结了自由基反应磁效应产生的原因、单-三转换理论及磁效应机理。同时,也为国内同行介绍了自由基反应磁效应研究新的发展动态。  相似文献   

20.
谢晨  陈名松  周田华 《发光学报》2009,30(2):261-266
激光声遥感探测水下声信号技术,是比以往任何一种水声探测技术都先进的技术,但探测系统的灵敏度一直未曾分析。得出了在直接光强检测方式下表面微波的最小可探测幅度值,并且分析了最小可探测幅度值分别和探测高度、接收孔径的关系。在直接光强检测方式下,针对水下声场形成的表面微扰现象,通过建立探测系统的一维物理模型进行理论推算。直接光强检测方式下表面微波的最小可探测幅度值为0.424 4 mm,当表面微波幅度超过该值时,探测系统灵敏度完全满足对水下声场的实时监测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号