首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
采用发射光谱法,研究了具有三层介质的介质阻挡放电中不同厚度气隙内微放电通道的等离子体参量的变化规律。与在传统的具有双层介质的介质阻挡放电系统中所产生的微放电通道不同,三层介质系统内微放电通道在光谱特性方面展现了完全不同的性质以及变化规律。实验发现,微放电通道在不同的放电气隙中具有不同的发光强度。利用氮分子第二正带系(C3Πu→B3Πg)的发射谱线以及对氮分子离子391.4 nm谱线强度与氮分子394.1 nm谱线强度之比的考察,实验进一步测量了氮分子(C3Πu)的振动温度以及电子平均能量分别随氩气含量以及在不同电压下的变化规律。结果表明,当外加电压一定时,厚气隙内形成的微放电丝在分子振动温度以及电子平均能量上均低于薄气隙微放电丝。并且它们都随着氩气含量的增加而降低。随着电压的逐步升高,厚气隙内的微放电丝在以上两种参量上均基本保持不变,而薄气隙内微放电丝则出现较为明显的升高。这表明具有三层介质的介质阻挡放电中薄气隙较厚气隙对电压更为敏感且在相同电压浮动内电场变化范围更大。  相似文献   

2.
在空气与氩气组成的混合气体的介质阻挡放电实验中,采用发射光谱法,首次研究了放电气隙分别为:1, 4和2 mm三层放电气隙中的放电丝的光谱特性。这与以往的单层放电气隙或者是双层放电气隙中的放电丝在光谱特性方面有很大的不同。实验通过采集氮分子第二正带系(C3ΠuB3Πg)谱线,计算出不同放电气隙中的放电丝的分子振动温度。利用氮分子离子391.4 nm谱线强度与氮分子394.1 nm谱线的强度之比得到不同放电气隙中放电丝的电子平均能量。增加氩气在混合气体中的比例,得到分子振动温度及电子平均能量随着氩气含量增加的变化趋势。实验结果表明:在同一氩气含量下,分子振动温度从小到大的顺序为:2 mm放电气隙,1 mm放电气隙,4 mm放电气隙。电子平均能量从小到大的顺序为:4 mm放电气隙,2 mm放电气隙,1 mm放电气隙。三层放电气隙中放电丝的分子振动温度及电子平均能量均随着氩气含量的增加而减小。  相似文献   

3.
采用双水电极介质阻挡放电装置,在空气和氩气的混合气体中,首次研究了由中心亮点和暗点组成的亮暗点超六边形斑图。通过观察斑图照片,可以发现暗点位于周围其他三个亮点的质心处,并且亮点和暗点的亮度有所不同,这说明亮点和暗点的等离子体状态可能不同。利用发射光谱法,研究了亮暗点超六边形斑图中亮点和暗点的等离子体参量随氩气含量的变化趋势。首先通过采集氮分子(N2)第二正带系(C3Πu→B3Πg)发射谱线,计算出了亮点和暗点的分子振动温度; 之后利用氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度之比,得到了此斑图中亮点和暗点的电子平均能量; 最后通过氩原子696.57 nm(2P2→1S5)谱线的展宽,研究了此斑图中亮点和暗点的电子密度。实验结果发现: 在同一氩气含量下,亮暗点超六边形斑图中暗点的分子振动温度、电子平均能量和电子密度均高于亮点的相应等离子体参量; 保持其他实验参数不变,随着氩气含量从70%变化到95%,亮点和暗点的分子振动温度和电子密度均是逐渐增大的,而电子平均能量则是逐渐减小的。亮点和暗点的等离子状态的不同,说明二者的放电机制可能不同。进一步采用高速录像机对斑图进行短曝光拍摄,发现亮点存在沿面放电,这些沿面放电交汇形成暗点。  相似文献   

4.
氩气含量对介质阻挡放电中单丝等离子体温度的影响   总被引:1,自引:0,他引:1  
在空气与氩气组成的混合气体放电中,首次研究了由中心点和外层晕组成的单丝。从照片中观察单丝结构,发现混合气体中氩气所占的比例越重,单丝的直径随之越小,同时中心点和外层晕的亮度有明显的差异,说明中心点和外层晕可能处于不同的等离子体状态。实验对单丝结构进行了光学时空分辨测量,研究了中心点和外层晕两层结构的微观特性。利用发射光谱法,详细地研究了该单丝结构的中心点和外层晕的等离子体参数随氩气含量的变化关系。实验根据氮分子第二正带系(C3ΠuB3Πg)谱线计算了中心点和外层晕的分子振动温度;通过氮分子离子N+2(391.4 nm) 第一负带系谱线与氮分子N2(394.1nm)谱线强度比,反映中心点和外层晕的电子平均能量随氩气含量的变化关系;利用氩原子763.2 nm(2P6→1S5)和772.077 nm(2P2→1S3)两条谱线的相对强度比法,估算了中心点和外层晕的电子激发温度。结果表明:中心点的光信号对应着第一个电流脉冲, 且其光信号较弱;而外层晕的光信号同时对应着第一个和第二个电流脉冲, 且其光信号较强。在相同的氩气含量条件下,外层晕比中心点的分子振动温度、电子平均能量以及电子激发温度均要高。随着氩气含量从30%逐渐增大到50%,中心点和外层晕的分子振动温度是逐渐减小的,而电子平均能量和电子激发温度均是逐渐增大的。  相似文献   

5.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了由点和线组成的八边形结构。采用发射光谱法,研究了八边形结构中的点和线的等离子体温度随压强的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了点和线的分子振动温度;通过氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度比,研究了点和线的电子平均能量大小变化;利用氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)两条谱线强度比法,得到了点和线的电子激发温度。实验发现:在同一压强条件下,线比点的分子振动温度、电子平均能量以及电子激发温度均高;随着气体压强从40 kPa增大到60 kPa,点和线的分子振动温度、电子平均能量以及电子激发温度均减小。  相似文献   

6.
采用H型放电间隙的介质阻挡放电装置,在氩气和空气的混合气体中,得到了三种新颖的等离子体发光斑图。较于传统获得的斑图,这三种发光斑图是产生在单层气隙与双层气隙结合的气隙装置之中。通过相机拍摄到的斑图照片,可以发现单层气隙和双层气隙中微放电通道呈现的发光亮度、颜色、放电面积等状态有所不同,这表明微放电通道所处的等离子体状态可能各不相同。通过分析这三种等离子体发光斑图, 利用发射光谱法首次研究了单层气隙和双层气隙内微放电通道的等离子体参量。实验通过采集氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算了单层气隙和双层气隙内微放电丝的分子振动温度,并进一步利用氩原子696.57 nm(2P2→1S5)谱线的展宽分析了单层气隙和双层气隙内微放电丝的电子密度。结果发现: 在左右相同厚度的双层气隙中,耦合微放电丝的分子振动温度基本相同,电子密度也趋于一致,单层气隙内微放电丝的分子振动温度要高于双层气隙内微放电丝,电子密度则小于双层气隙内微放电丝。单层气隙和双层气隙中不同微放电通道等离子体状态的差异性使之形成多种折射率的等离子体光子晶体,其周期性排布将具有更加丰富的带隙结构。  相似文献   

7.
设计了一种电极间隔为10 cm的介质阻挡放电装置,以氩气为工作气体,在低气压下产生等离子体。采用发射光谱法,研究了放电空腔内等离子体电子温度和电子密度随空间位置的变化规律。等离子体电子温度的变化通过使用Corona模型计算获得,等离子体电子密度的变化通过分析Ar原子750.4 nm谱线强度变化得到。实验发现空腔内不同位置的等离子体电子温度和电子密度是不同的。当测量位置从阴极向阳极移动时,电子温度先略上升而后迅速下降,再缓慢上升;电子密度先缓慢而后迅速地增大。  相似文献   

8.
采用发射光谱法,首次研究了等离子体参数及激发状态对介质阻挡放电六边形斑图稳定性的影响。在氩气/空气混合气体的介质阻挡放电中,随着电压的升高,放电丝直径增大,六边形斑图逐渐稳定,同时放电颜色由紫色逐渐变为灰白色,说明其等离子体状态及参数可能发生了变化。测量了六边形斑图放电过程中氮分子谱线和氩原子谱线相对于氩原子763.51 nm的相对强度、分子振动温度和电子激发温度随外加电压的变化。结果发现:氮分子谱线相对强度随电压增加而降低,氩原子谱线相对强度却升高;分子振动温度与电子激发温度均随电压增加而增大。这些现象表明:随着电压增大,电子能量增加。由此,氩原子激发增多,放电丝直径增大,介质表面上沉积的壁电荷面积增大,放电丝之间的相互作用增强,六边形斑图趋于稳定。  相似文献   

9.
使用水电极介质阻挡放电装置,分别在大气压空气和氦气中实现了稳定的高气压放电。通过水电极观察两种气体的放电,发现大气压空气中放电为空间随机分布的微放电丝,等离子体是不均匀的,而在氦气中放电没有微放电丝,空间分布比较均匀。比较而言,这种均匀放电产生的等离子体具有更广泛的工业应用前景。对两种气体中放电的电流波形进行了比较,发现空气中放电的电流脉冲在时间上是随机出现的而氦气中放电的电流脉冲在时间上具有周期性,并且空气中放电脉冲宽度约为几十ns而氦气中放电的电流持续时间较长,脉冲宽度大约为1μs。文章还对两种气体中介质阻挡放电发射光谱进行了研究,结果表明大气压氦气中均匀放电的N+2(B2Σ+uX2Σ+g)谱线391.4nm很强而在大气压空气放电中此光谱线很弱。这些研究结果对高气压条件下均匀放电的实现和大气压辉光放电的工业应用具有重要意义。  相似文献   

10.
通过自主设计正极性Marx纳秒脉冲电源,在不同放电频率、不同电源电压幅值下,采用发射光谱在真空环境下对氩气放电时的电子激发温度和电子密度进行测量计算。通过双谱线法选取合适的Ar原子谱线,求得电子激发温度在1 550~3 400 K之间,在正极性脉冲电源做电压源,且电源电压一定时,电子激发温度随着电源频率的升高而呈现上升趋势,在电源频率一定时,电子激发温度也随着电源电压的增加而升高。依据Stark展宽原理对真空体积介质阻挡放电时的电子密度进行了测量计算。电子密度的数量级可达1013 m-3,当电源电压不变时,电子密度随电源频率的增加呈现上升趋势,当电源频率不变,电子密度随着电源电压的升高也逐渐提升。  相似文献   

11.
采用微间隙平行平板介质阻挡放电(DBD)装置,以氩气作为工作气体,研究了锯齿波激励下DBD的放电图像、发光信号、发射光谱与锯齿波频率的关系。研究发现随锯齿波频率增加,DBD会从均匀模式(低于10 kHz),经历微放电丝与均匀放电共存,并最终过渡到微放电丝占据全部的电极区(频率高于35 kHz)。外加电压和发光波形表明,锯齿波频率较低时的均匀放电对应高占空比的阶梯放电。随频率增大,出现微放电丝后,发光波形呈现多脉冲形式,且电压半周期中的发光脉冲个数随着锯齿波频率的增大而减小。当锯齿波频率高于35 kHz时,每半个电压周期的发光脉冲个数减小为一个(单脉冲放电)。通过对放电的发射光谱进行研究,发现发射光谱中包含氮分子的第二正带系(C3ΠuB3Πu),OH(A2Σ+→X2Π)和ArI的特征谱线。研究表明OH(308.8 nm)和ArI(750.4 nm)的谱线强度均随锯齿波频率的增大而增大。  相似文献   

12.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了超四边斑图沿面放电,它是由中心点和暗点组成的。通过观察普通相机的斑图照片,可以发现中心点位于周围四个暗点的中心处。利用高速录像机对斑图进行短曝光拍摄,观察发现中心点对应体放电,暗点对应沿面放电,暗点由这些沿面放电形成。中心点和暗点的亮度有所不同,这说明中心点和暗点的等离子体状态可能不同。采用发射光谱法,研究了超四边斑图沿面放电的的中心点和暗点的等离子体参量随氩气含量的变化趋势。利用氮分子第二正带系(C3Πu→B3Πg)发射谱线,计算得出了中心点和暗点的分子振动温度; 然后通过氩原子696.57 nm (2P2→1S5)谱线的展宽,研究了中心点和暗点的电子密度。实验结果表明: 在相同氩气含量下,暗点的分子振动温度和电子密度均高于中心点的相应等离子体参量; 在其他实验条件不变的情况下,随着氩气含量从90%增大到99.9%,中心点和暗点的分子振动温度和电子密度均逐渐增大。结果表明中心点和暗点的等离子状态不同,说明二者的放电机制可能不同。  相似文献   

13.
空气和氩气混合气体的双水电极介质阻挡放电装置中,在电压升高过程中首次发现了两种由亮点和暗点组成的亮暗点菱形斑图。通过观察斑图照片可以发现: 第一种菱形斑图(菱形斑图Ⅰ)中的暗点处于由亮点组成的菱形单元的中心;第二种菱形斑图(菱形斑图Ⅱ)中的暗点恰好处于周围其他三个亮点的中心位置。利用发射光谱法,通过采集氮分子(N2)第二正带系(C3ΠuB3Πg)发射谱线和氩原子696.54 nm(2P2→1S5)谱线的展宽,研究了两种菱形斑图中亮点和暗点的分子振动温度和电子密度。实验发现: 两种菱形斑图中暗点的分子振动温度均高于亮点,相对菱形斑图Ⅰ来说,菱形斑图Ⅱ中的亮点和暗点的分子振动温度均升高;而菱形斑图Ⅰ中暗点的电子密度低于亮点,菱形斑图Ⅱ中亮点和暗点的电子密度却几乎相等。两种菱形斑图中电子密度表现出不同的变化趋势,且在菱形斑图Ⅱ中表现出的规律尤为特殊,因而采用高速录像机对菱形斑图Ⅱ进行短曝光拍摄观察斑图中亮点和暗点的成分,发现暗点是体放电和沿面放电共存的状态。进一步研究从菱形斑图Ⅰ到菱形斑图Ⅱ的演化过程中三种斑图中亮点的电子密度,结果发现: 演化中间过程的斑图中的亮点的电子密度最大,菱形斑图Ⅱ中亮点的电子密度最低。实验结果对于研究斑图的自组织形成过程具有参考作用。  相似文献   

14.
在350~1150 nm范围内对开放空间Ar气介质阻挡放电等离子体的发射光谱进行测量,表明Ar发射谱线主要集中在680 nm~950 nm,且都为Ar原子谱线。采用发射光谱相对强度对比法,选取相距较近且有相同下能级的727.29 nm(2P2-1S4),738.40 nm(2P3-1S4)和751.47 nm(2P5-1S4)三条光谱测量电子温度。通过对在Ar气和空气中放电谱线的对比和分析,得出发射光谱相对强度与电源功率的关系。最终得出若要便于工业应用和光谱测量,需要选择特定的气体流量和电源功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号