共查询到18条相似文献,搜索用时 483 毫秒
1.
2.
利用光谱指数反演植被叶绿素含量的精度及稳定性研究 总被引:9,自引:0,他引:9
农业遥感中,利用光谱指数方法反演作物叶绿素含量一直得到广泛地应用。利用PSR-3500光谱仪及SPAD-502叶绿素仪同步获取了冬小麦冠层光谱数据及对应叶片的叶绿素相对含量(SPAD值),并利用高斯光谱响应模型将PSR获取的地面连续光谱数据重采样为多光谱Landsat-TM7及高光谱Hyperion光谱数据,然后分别计算基于两种传感器的归一化差值植被指数(normalized difference vegetation index, NDVI)、综合叶绿素光谱指数(MCARI/OSAVI,the ratio of the modified transformed chlorophyll absorption ratio index (MCARI) to optimized soil adjusted vegetation index(OSAVI))、三角形植被指数(triangle vegetation index, TVI)及通用植被指数(vegetation index based on universal pattern decomposition method, VIUPD),再将四种光谱指数与叶绿素含量进行回归分析。结果表明,针对重采样后的TM和Hyperion两种传感器数据,VIUPD反演叶绿素含量精度(决定系数R2)最高,反演能力最稳定,这与其“不受传感器影响”的特性密不可分;MCARI/OSAVI反演精度和稳定性次之,是因为引入的OSAVI削弱了土壤背景的影响;宽波段指数NDVI和TVI对模拟TM数据有较好的反演精度,对Hyperion数据反演精度却很低,可能是因为两种指数的构成形式简单,考虑的影响因素较少。以冬小麦为例,对利用光谱指数反演植被叶绿素含量的精度和稳定性进行了研究并分析了其影响因素,经比较发现利用植被指数VIUPD进行植被叶绿素含量反演时,其精度和稳定性最好。 相似文献
3.
小麦叶面积指数的高光谱反演 总被引:6,自引:0,他引:6
以高光谱遥感技术实现了小麦叶面积指数(leaf area index,LAI)的反演.对18种高光谱指数进行了比较分析,筛选出了可敏感反映小麦LAI的高光谱指数OSAVI,并以地面光谱数据为样本建立了小麦LAI的反演模型.分析表明,指数OSAVI所建立的反演模型校正集与预测集R2分别达0.823与0.818,在各指数中反演精度最高.利用反演模型逐象元对OMIS影像进行解算,实现小麦LAI的空间量化表达,并将反演结果与地面实测值进行回归拟合,发现两组数据的拟合模型R2达0.756,RMSE为0.500,具有较高的相似度.结果表明:以高光谱指数进行小麦LAI的反演是可行的,且OSAVI为优选指数. 相似文献
4.
PROSAIL冠层光谱模型遥感反演区域叶面积指数 总被引:8,自引:0,他引:8
大面积区域作物叶面积指数遥感反演,对指导作物管理具有非常重要的意义,验证和发展基于物理叶面积指数遥感反演可避免基于经验模型的缺点。以北京地区青云店、魏善庄和高丽营为研究区,采用MODIS和ASTER两类不同空间分辨率遥感数据,探讨PROSAIL物理模型反演冬小麦叶面积指数的可行性,尤其在不同空间分辨率遥感数据上的稳定性,并与经验模型进行了对比分析。 与经验模型相比,物理模型模拟LAI值更具真实性;用线性组分加权的方法,对小尺度物理模型反演LAI进行尺度扩展并与基于大尺度遥感数据的LAI物理反演结果相对比,相差不大,说明LAI物理反演方法在空间尺度上的稳定性。 相似文献
5.
植被冠层水平叶绿素含量的高光谱估测 总被引:4,自引:0,他引:4
植物的叶绿素含量指示了其健康状况。大区域范围内植被叶绿素含量信息的提取可以用于评价植被的生长状况,实现对生态环境的监测。对于农田系统而言,作物叶绿素含量的估测还可以对施肥等田间操作提供支持。文章利用辐射传输模型模拟多组不同状态下的植被冠层光谱反射率,通过对模拟数据的冠层叶绿素含量以及冠层光谱之间关系的分析,构建了估测植被冠层水平叶绿素含量的光谱指数模型。该模型对冠层叶绿素含量的方差解释量达到了75%以上。分别使用野外实测冠层光谱和Hyperion高光谱遥感影像对试验区进行验证。结果证明该模型对冠层水平的叶绿素含量估测效果较好,具有应用价值。 相似文献
6.
综合使用光谱技术对作物养分进行实时、有效诊断,有助于作物的精准管理、保障产量和减少环境污染,提高肥料利用率,并且为定量估测作物生化组分状况提供了一种新的途径.光谱指数是进行作物叶片叶绿素实时估测的重要指标,然而由于受到环境条件及内在生化成分的影响,估测结果不尽满意.为了进一步提高光谱指数在估测作物叶片叶绿素含量时的抗干... 相似文献
7.
基于PROSPECT+SAIL模型的森林冠层叶绿素含量反演 总被引:6,自引:0,他引:6
森林冠层叶绿素含量直接反映着森林的健康和胁迫情况。叶绿素含量的准确估测,更是研究森林生态系统循环模型的关键。文章以PROSPECT+SAIL模型为基础,从物理机理角度反演森林冠层叶绿素含量。首先利用PROSPECT和SAIL模型模拟叶片水平和冠层水平的光谱,并建立叶片水平叶绿素含量的查找表反演叶片叶绿素含量,然后结合森林结构参数Leaf Area Index(LAI)实现叶片尺度与冠层尺度叶绿素含量的转化,从Hyperion影像反演研究区域冠层水平叶绿素含量。结果表明,叶绿素含量的主要影响波段为400~900nm;PROSPECT模型模拟的叶片光谱和SAIL模型模拟的冠层光谱均与实测光谱拟合效果较好,相对误差分别为7.06%,16.49%;LAI反演结果的均方根误差RMSE=0.5426;利用PROSPECT+SAIL模型可以较好地反演森林冠层叶绿素含量,反演精度为77.02%。 相似文献
8.
基于高光谱数据和模型反演植被叶面积指数的进展 总被引:3,自引:0,他引:3
植被叶面积指数(Leaf Area Index , LAI)是陆面过程中影响陆-气交换的重要参数,也是表征植被冠层结构最基本的参量之一。准确而快速地获取LAI是植被-气候相互作用、植被生态和农作物估产研究不可缺少的工作。本文首先针对LAI和高光谱遥感进行概述,然后从不同平台高光谱传感器数据和不同反演方法两个角度总结了国内外近些年来高光谱遥感LAI的研究进展,最后分析了高光谱遥感反演LAI的未来发展方向。 相似文献
9.
精确反演农作物冠层叶面积指数对指导作物管理和作物估产具有非常重要的意义。以吉林市郊区玉米种植区为试点,考虑冠层叶片水分含量对LAI的贡献,在NDVI的基础上结合表征冠层叶片水分含量的植被指数DSWI,提出一种归一化综合植被指数NCVI,以此建立模型反演LAI,并对模型进行检验。结果表明:NCVI模型反演LAI值与实测值之间存在良好的对应关系,此模型突破了传统经验模型对稠密冠层LAI反演的局限,对LAI值大于3的冠层反演效果良好;另外,NCVI模型对土壤水环境十分敏感,在干旱半干旱地区的反演效果明显优于一般区域。 相似文献
10.
晚播条件下基于高光谱的小麦叶面积指数估算方法 总被引:1,自引:0,他引:1
利用高光谱遥感技术,分析晚播条件下小麦叶片与冠层模式光谱特征和叶面积指数(LAI)的变化规律,建立了适用于晚播小麦的叶面积指数估算方法。研究结果表明:(1)从红光和蓝紫光420~663 nm波段提取的叶绿素光谱反射率植被指数(CSRVI)与旗叶SPAD值做相关性分析,结果表明正常播期和晚播处理在叶片模式的相关系数分别为0.963*和0.997**,达显著和极显著水平。(2)利用相关性分析,得出两个播期处理的LAI与SPAD值相关系数分别是0.847*和0.813*,均达到显著水平。SPAD值与LAI及CSRVI指数均具有相关性,可以用CSRVI指数建立LAI的估算模型。(3)对叶片模式和冠层模式光谱曲线特征分析得出,叶片模式中在680~780 nm处的反射率呈现陡升趋势,在可见光波段的446和680 nm和近红外波段的1 440和1 925 nm处各有两个明显的吸收波谷,在540~600,1 660和2 210 nm波段处有两个明显的反射波峰;三种冠层模式中60°模式下的光谱反射率整体表现为最高。(4)将各波段反射率与叶面积指数做相关性分析得出在可见光波段范围内,光谱反射率与LAI总体呈现负相关性,500~600 nm处有一个波峰。(5)将三种冠层模式下(仪器入射角度分别与地面呈30°,60°和90°夹角)的等效植被指数与LAI做相关性分析得出:60°冠层模式下八种植被指数与正常播期LAI的相关性均未达显著水平,比值植被指数(RVI)、归一化植被指数(NDVI)、增强型植被指数(EVI)、再次归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、修改型土壤调整植被指数(MSAVI)的等六种植被指数与晚播条件下的LAI具有显著和极显著相关关系;90°冠层模式下CSRVI指数与正常播期处理的LAI具有显著相关关系,NDVI指数与晚播处理的LAI具有显著相关关系;30°冠层模式下的八种植被指数与两播期处理的LAI的相关性均未达显著水平。综合分析CSRVI指数、NDVI指数的相关性最高,这两种指数最具有估算LAI的潜力。(6)通过三种冠层模式所计算的植被指数估算LAI模型,结果表明,正常播期条件下,其最佳估算模型是90°冠层模式CSRVI指数所建立的线性模型Y=-7.873 6+6.223 8X;晚播条件下的最佳模型是60°冠层模式RDVI指数所建立的幂函数模型Y=30 221 333.33X17.679 1,两个模型的决定系数R2分别为0.950*和0.974**。研究表明试验中所提取的CSRVI指数能够反映旗叶叶绿素含量,可以通过光谱仪器的叶片模式对小麦生育期内叶绿素含量进行监测;通过冠层模式计算的CSRVI指数和RDVI指数所建立的LAI估算模型可以对小麦的LAI进行无损害观察。 相似文献
11.
植被叶片叶绿素含量反演的光谱尺度效应研究 总被引:1,自引:0,他引:1
目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80 μg·cm-2)下的5 nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35 nm六种波段宽的光谱数据,再分析评价5~35 nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65 nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method, VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index, NDVI)和简单比值指数(simple ratio index, SRI)其次,虽然其决定系数R2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其“独立于传感器”的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。 相似文献
12.
遥感光谱信息提取不同覆盖下植被水分信号的研究进展 总被引:4,自引:0,他引:4
综述了基于遥感光谱信息的植被水分信号提取的研究进展,包括直接利用光谱反射率反演植被水分信息到建立植被水分指数(WI),再发展至利用辐射传输模型来获取植被冠层水分信息。着重评述了针对低植被覆盖条件下的提取其冠层水分信息的方法,包括利用冠层生理参数估算植被水分信号;基于去除土壤背景影响的光谱植被水分指数或辐射传输模型估算植被水分信息,以及基于多角度的星-地观测提取稀疏条件下的植被水分信息。最后讨论了针对提取低覆盖植被冠层水分信息方法的可能发展趋势。 相似文献
13.
光谱指数的植被叶片含水量反演 总被引:1,自引:0,他引:1
利用光谱技术监测植被水分状况是了解植被生理状况及生长趋势的重要手段之一。选择艾比湖湿地自然保护区作为靶区。采用聚类分析、变量投影重要性分析(VIP)以及敏感性分析等方法,对植被不同含水量进行分级,并针对不同等级的植被含水量进行估算及验证。结果表明: (1)基于聚类分析中的欧氏距离的方法将植被叶片相对含水量划分为高等、中等、低等三个等级,其范围分别为70.76%~80.69%,53.27%~70.76%,31.00%~53.27%。在中红外与远红外(1 350~2 500 nm)之间,反射率越低植被含水量越高;波长380~1 350 nm范围,无此现象。(2)应用VIP方法可知,所选的8种植被水分指数VIP值均超过了0.8,说明植被水分指数预测能力均较强且差别不显著。其中MSI,GVMI与植被叶片相对含水量的非线性三次拟合函数效果最佳,MSI决定系数R2为0.6575和GVMI决定系数R2为0.674 2。植被叶片相对含水量在30%~45%范围,MSI指数的NE值最低,在45%~90%范围时,GVMI指数的NE值最低。NDWI1240指数的NE值在70%左右起伏较大,说明NDWI1240 指数在植被含水量为70%左右,预测能力较差。(3)通过误差分析可知GVMI指数反演的结果误差最小,不同的植被指数对不同含水量的植被估算结果相差较为明显,因此分段估算植被含水量是有必要的。综上所述,利用高光谱遥感技术对监测艾比湖保护区植被生长及干旱环境提供基础研究。 相似文献
14.
叶绿素含量是评价农作物健康状况、生产能力和环境胁迫的重要指标,实时、快速、准确获取农作物叶片叶绿素含量对监测农作物生长状况具有重要意义.遥感是获取区域和全球农作物叶片叶绿素含量的有效途径,但已有的作物叶片叶绿素含量遥感反演研究未充分考虑下垫面背景的干扰,影响了反演精度.为此,以Sentinel-2遥感卫星影像为数据源,... 相似文献
15.
基于光谱分析的草地叶绿素含量估测植被指数 总被引:2,自引:0,他引:2
对现有叶绿素遥感估测研究方法进行比较,确定植被指数法是其中最实用、普适性最强的研究方法。近年来,草地退化问题日益严峻,需要进一步从光谱分析、植物生化参数估测的角度加以研究,因而亟需建立一种用于反演草地植被叶绿素含量的植被指数。首先对四川省松潘草原和内蒙古自治区贡格尔草原的草地实测反射率光谱曲线及其一阶微分曲线进行分析,通过这两种光谱与叶绿素含量的相关性分析,找到红边区域(red-edge position, REP)与草地叶绿素含量之间的规律,即叶绿素含量越高,反射率一阶微分曲线的红边拐点(red-edge inflection point, REIP)取值越高,由此构建草地叶绿素含量估测植被指数(grassland chlorophyll index, GCI),选取最适宜反演的波段,最后采用卫星高光谱影像计算GCI,将计算结果与野外试验观测的叶绿素含量数据进行精度分析验证。结果证明,对于草地叶绿素含量来说,GCI比其他叶绿素指数的敏感性更强,具有较高的草地叶绿素含量估测精度。GCI是第一个针对草地叶绿素含量估测而被提出的植被指数,其对遥感反演草地叶绿素含量具有广泛应用潜力。同时这种基于光谱分析的草原植被叶绿素含量估测方法为其他的草原植被生化参数估测、草原植被生长状况评价以及草地生态环境变化大面积监测提供了新的研究思路。 相似文献
16.
农业是国家经济发展的基础支柱,同时也是社会发展的基础产业。我国农业遥感技术的进步和发展,大量遥感卫星发射升空,如高分1号、 2号和6号等,为我国农情监测、作物长势、农业产业结构调整提供了重要技术支撑。农业遥感成为农业科技创新和精准农业的重要手段。叶面积指数(LAI)是一种可用来衡量植被冠层生理与生化的关键指标,不仅可以用来评估植被冠层表面的最初能量交换情况,提供相应的结构定量数据,还能反映植被冠层的光谱能量信息。同时,在陆地气候变化情况下,叶面积指数是陆地生态系统和土地利用过程生产力模型的关键输入。此外,研究发现植被冠层受人为活动和气候变化的直接或间接影响时,叶面积指数也是陆地生态系统应对气候变化十分重要的衡量标准。因此,针对GF-6 WFV遥感影像叶面积指数反演研究较少和传统光谱植被指数模型机理性、稳定性较弱的问题。基于GF-6 WFV遥感影像以栾城县为试验区,通过光谱植被指数与实测叶面积指数构造5种传统光谱植被指数模型和15种红边参与的光谱植被指数模型反演乳熟期叶面积指数,采用R2和RMSE进行模型评价,同时利用未参与建模的实测叶面积指数和MODIS LAI产... 相似文献
17.
光谱指数的植物叶片叶绿素含量估算模型 总被引:4,自引:0,他引:4
叶片叶绿素能够有效监测植被的生长状况,利用光谱指数反演植被叶绿素含量是目前的通用方法。实测了盐生植物光谱反射率和叶片叶绿素含量。对SPAD值进行变换,对比Pearson与VIP方法探讨盐生植被叶片叶绿素含量与植被指数的相关性并进行精度验证,从中选出最佳拟合模型。研究表明,通过对Pearson与VIP相关性分析,最终选定VIP方法建立植被指数的叶片叶绿素估算模型,NDVI705,ARVI,CIred edge,PRI,VARI,PSRI和NPCI的VIP值均大于0.8,因此选定这七个植被指数为最优植被指数;预测结果显示,所有模型的相关性都在0.7以上,预测值与实测值相关性最好的是经过倒数变换的SPAD值,R=0.816,RMSE=0.007。基于VIP方法的反演模型能较好地估算研究区植被叶绿素含量,该方法为植物叶绿素含量诊断的实际应用提供了重要的理论依据和技术支持。 相似文献
18.
消费级近红外相机的水稻叶片叶绿素(SPAD)分布预测 总被引:2,自引:0,他引:2
便捷可靠的作物营养诊断是作物科学施肥管理的基础,也是精准农业的核心。叶绿素含量是作物氮营养含量的重要指标。以水稻叶片为研究对象,用改造后的普通单反相机搭载滤波片的方式拍摄叶片的可见光和中心波长为650,680,720,760,850和950 nm多个波段的近红外图像,获取不同波段的相对反射率值,通过可见光与多个近红外波段结合的回归分析与比较,筛选出精度较高且稳定的模型。经过对比相机三个成像通道,R通道与叶绿素含量(SPAD值)的相关性要高于B和G通道。实验结果表明,植被指数GVI最能反映作物的生长状况,近红外波段760 nm对SPAD值的预测效果最好,最小二乘支持向量机法结合多个植被指数建模的预测精度R2为0.831 4,取得了较为理想的效果。同时使用高光谱成像仪采集水稻叶片的高光谱影像,对比消费级近红外相机成像方式下与高光谱成像方式下得到的植被指数多因子预测模型精度,两者相当。实验证明消费级近红外相机能够获得与高光谱成像仪相近的叶绿素含量估测结果。 相似文献