共查询到18条相似文献,搜索用时 62 毫秒
1.
高光谱成像的甜瓜嫁接愈合状态早期分类检测 总被引:1,自引:0,他引:1
嫁接的目的是为了提高植物抗土传病害和非生物逆境的能力。甜瓜嫁接愈合状态的早检测是当前育苗厂工业化发展的重要需求。在标准正态变量变换-Savitzky-Golay平滑-二阶导数(SNV-SG-SD)预处理基础上提出了融合嫁接差异信息的竞争性自适应重加权算法-连续投影法(DIS-CARS-SPA)特征提取算法,并建立了基于网格寻优径向基核函数支持向量机(GS-RBF-SVM)分类模型,实现了基于高光谱成像的甜瓜嫁接愈合状态早期分类检测。首先采集以南瓜为砧木,甜瓜为接穗的嫁接成活苗和非成活苗愈合期1~7 d内的高光谱图像,分别采用9种光谱预处理方法,2种特征提取算法和5种优化算法4种核函数支持向量机(SVM)分类模型进行分析。结果显示,SNV-SG-SD光谱预处理、DIS-CARS-SPA特征提取和GS-RBF-SVM分类模型效果最好。利用该模型进一步分析,在同一天不同类型二分类中,愈合期1~7 d内任何一天的分类准确率均能达到99%以上;在不同天嫁接成活苗二分类中可达 90.17%以上;在不同天嫁接非成活苗二分类中可达97.03%以上;在不同天不同类型十四分类中可达到96.85%,比未融合嫁接差异信息的CARS-SPA特征提取方法准确率提高了0.59%,比只预处理未特征提取方法提高了3.37%。结果表明,所提出的方法不仅能实现同一天不同类型二分类,还能实现不同天同一类型的二分类,不同天不同类型的多分类。在实际应用中,可将分类时间点提前到嫁接后第1天(肉眼观察第3~4天,机器视觉技术第1~2天),同时第3天均是嫁接成活苗和非成活苗的差异突变天数,嫁接成活苗状态可分为弱—中—强三个阶段,非成活苗状态可分为弱—更弱两个阶段,该结论能为甜瓜嫁接苗生产提供有效指导,具有一定的理论和实践价值。 相似文献
2.
机采籽棉杂质分类检测为调整棉花清理机械加工参数和工序提供参考依据,对提升皮棉品质具有重要意义。但由于籽棉棉层分布不均匀,使得图像检测难度增大,使用传统的检测方法无法有效检测各类杂质。采用高光谱成像方法对机采籽棉中的棉叶、棉枝、地膜和铃壳(内外)五种杂质进行分类判别检测。首先采集120个机采籽棉样本的高光谱图像,选取感兴趣区域获取平均光谱曲线。发现由于物质构成的差异,不同杂质体现出不同的吸收和反射特性,不同种类物质之间的光谱差异大于同类物质。对提取的平均光谱曲线进行主成分分析(PCA),结果显示棉花、残膜和铃壳外与其他三类相比,有较好的聚集性和可分性,但是棉叶、铃壳内和棉枝三类相互叠加在一起,空间分布存在严重交叉重叠。以提取的平均光谱曲线为训练样本,选择线性判别分析(LDA)、支持向量机(SVM)和神经网络(ANN)三种分类判别算法,对算法参数进行寻优,并建立机采籽棉杂质分类判别模型。其中,经过LDA模型降维后的样本空间较PCA表现出了更好的聚集性和可分性,采用正则化防止过拟合,得到训练集准确率为86.4%,测试集准确率为86.2%;SVM模型的参数寻优结果为C=105,g=0.1,其训练集准确率为83.42%,测试集准确率为83.40%;ANN模型参数寻优得到隐含层数和神经元个数分别为2和17,训练集准确率为82.9%,测试集准确率为81.8%。对三种模型的分类效果和检测用时进行比较,LDA模型结果最优。通过对高光谱图像进行像素等级分类判别,结果显示棉花识别效果较好,植物性杂质都被有效检测,但是地膜和棉花存在误识别,分类效果与杂质光谱的分类判别模型结果一致。因此,采用高光谱成像技术可以快速、无损的检测和识别籽棉杂质,为棉花加工装备提供反馈参数,对棉花加工机械化和智能化有重要意义。 相似文献
3.
4.
高光谱成像技术被广泛应用于农产品的检测。基于高光谱成像技术结合机器学习算法无损鉴别不同地区的小米样本。将来源7个省份共计23份样品的小米样本根据地理区域划分为东北地区、河北、陕西、山东和山西共5大类,其中东北地区共6份样品,山西地区5份样品,河北、陕西和山东各4份样品。将每份样品均分为10等份并利用高光谱成像仪采集900~1 700 nm波段内小米的高光谱数据。为了减少光照不均匀和暗电流对实验的影响,对采集到的高光谱数据进行黑白校正。利用ENVI软件选取小米高光谱图像的感兴趣区域(ROI),每份小米样品选取9个ROI。计算ROI内的平均光谱值,以此平均值作为该样本的一条光谱记录,最后共收集到2 070条光谱曲线,其中东北类540条,山西类450条,其他河北类、山东类、陕西类各360条。为了减少样品表面的不平整性引起的散射现象,进而影响小米的真实光谱信息,对收集到的原始光谱进行多元散射校正预处理(MSC)。采用随机划分法对校正过后的光谱数据划分训练集和测试集,测试集占的比例为0.3。利用线性判别分析(LDA)对不同产地小米的光谱数据进行可视化分析,将测试集代入训练好的LDA模型,做出预测结果的混淆矩阵(Confusion Matrix),结果表明LDA对于陕西和山西类的预测准确率为0.84和0.99,对于东北、河北和山东的预测准确率仅为0.68,0.68和0.40。进而采用递归特征消除(RFE)对小米的光谱信息进行特征选择,去除冗余的信息,提高模型的预测准确率。将RFE分别与支持向量机(SVM)和逻辑回归(LR)结合,对不同产地小米的判别进行对比分析。将小米光谱数据的训练集分别代入SVM-RFE和LR-RFE模型并结合3折交叉验证技术,以模型F值的微平均(Micro-averaging)最优选择出相应的特征子集。结果表明,LR-RFE选择的波长数为74个,其模型的Micro_F为0.59;SVM-RFE选择的波长数为220,其模型的Micro_F为0.66。将选择后的特征子集应用到测试集并将测试集分别代入SVM和LR模型,采用模型预测结果的混淆矩阵和模型的受试者工作特征曲线(ROC)作为评价方法。结果表明SVM-RFE对东北地区、河北、陕西、山东和山西的预测准确率分别为1,0.37,0.72,0和1,其ROC曲线下面积(AUC)分别为0.82,0.92,0.93,0.70和0.99。LR-RFE的预测准确率分别为0.92,0,0.97,0和0.80,其AUC分别为0.72,0.74,0.94,0.66和0.88。从预测结果可以看出SVM-RFE模型的综合分类性能优于LR-RFE,而对陕西类的判别LR-RFE要优于SVM-RFE,对于河北类和山东类两个模型都不能有效判别。这两个模型的预测准确率相比LDA有了一定的提升。 相似文献
5.
《光学学报》2010,30(9)
提出了基于高光谱成像技术的猪肉嫩度检测方法。利用高光谱成像系统获取78个猪肉样本在400~1100nm范围的高光谱图像数据;通过主成分分析高光谱数据进行降维,从中优选出3幅特征图像,并从每幅特征图像中分别提取对比度、相关性、角二阶矩和一致性等4个基于灰度共生矩阵的纹理特征变量,这样每个样本共有12个特征变量,再通过主成分分析提取6个主成分变量,并参照剪切力方法测得的样本嫩度等级结果,利用神经网络方法构建猪肉嫩度等级判别模型。模型对校正集样本的回判率为96.15%,预测集样本的判别率为80.77%。研究表明高光谱图像技术可以用于猪肉嫩度等级水平的检测。 相似文献
6.
针对高光谱成像特点,提出了一种基于三维特征检测微小摄像头的方案。在空间维利用猫眼效应筛选疑似目标,在光谱维对结果进行精准判定。依据摄像头结构,分析了可见光摄像头的反射光谱特征。基于几何光学和辐射度学,计算和仿真了系统的探测距离。结果表明,正常工作时,光功率影响最小探测距离,目标尺寸影响最大探测距离。搭建了微小摄像头光谱特征验证系统。结果表明,采用吸收型红外截止滤光片的目标的非反射光占比曲线变化平缓且数值高,采用反射型红外截止滤光片的目标的非反射光占比曲线可见光部分数值高,红外部分数值低,从700 nm附近开始下降,甚至发生突变,实验数据显示,突变位置的斜率绝对值是红外波段斜率绝对值的10倍以上。实验结果与预期分析的结果一致,验证了高光谱成像技术检测微小摄像头的可行性。 相似文献
7.
高光谱成像在水果内部品质无损检测中的研究进展 总被引:13,自引:0,他引:13
随着高光谱成像技术的日趋成熟与高光谱成像硬件、软件成本的不断下降,以及高光谱图像数据处理算法的不断改进, 应用高光谱成像技术对水果品质进行无损检测成为当前研究热点之一。为了能跟踪国内外的最新研究成果, 对高光谱成像在水果内部品质(成熟度、坚实度、可溶性固形物、水分)检测研究进行综述,以期对我国相关研究人员的研究工作提供参考。 相似文献
8.
采用近红外高光谱成像技术对菜青虫的存活与死亡状态进行了研究,通过提取菜青虫不同状态的光谱信息,建立判别分析模型。以不同预处理方法对所提取的951.5~1 649.2 nm光谱进行预处理,并建立偏最小二乘判别分析(partial least square-discriminant analysis, PLS-DA)模型对菜青虫的生死状态进行判别分析,判别正确率接近或达到100%。用移动平均(moving average,MA)5点平滑光谱分别采用连续投影算法(successive projections algorithm, SPA)以及加权回归系数(weighted regression coefficient,Bw)分别选取了17和20个特征波长进行生与死状态的判别。基于特征波长建立了PLS-DA, K最邻近节点算法(K-nearest neighbor,KNN),BP神经网络(back propagation neural network,BPNN)以及支持向量机(support vector machine,SVM)模型,判别正确率接近100%。结果表明采用近红外高光谱成像技术对菜青虫生命状态的研究是可行的,为作物虫害的快速诊断提供了新方法。 相似文献
9.
基于NIR高光谱成像技术的长枣虫眼无损检测 总被引:3,自引:2,他引:3
为了研究快速识别虫眼枣与正常枣的有效方法,利用特征波长主成分分析法结合波段比算法进行虫眼枣识别。首先,利用NIR高光谱成像系统采集130个长枣(50个正常、80个虫眼枣)图像,提取并分析不同类型长枣特征区域的平均光谱曲线,对970~1 670 nm范围内的光谱数据进行主成分分析,确定7个特征波长(990,1 028,1 109,1 160,1 231,1 285,1 464 nm)。然后,对长枣图像做主成分分析,选择PC2图像进行虫眼识别,虫眼与正常枣的识别率分别为67.5%、100%。为了进一步提高虫眼枣的识别率,采用波段比(R1231/R1109)对未识别的虫眼枣进行再次识别,识别率提高到90%。结果表明,基于NIR高光谱成像技术的检测方法对虫眼枣识别是可行的,同时也为多光谱成像技术应用于在线检测长枣品质提供了理论依据。 相似文献
10.
针对马铃薯损伤部位随机放置会影响检测精度的问题,提出从正对相机、背对相机及侧对相机三个方向,应用透射和反射高光谱成像技术采集马铃薯图像,进行透射和反射高光谱成像的马铃薯损伤检测比较研究。对透射和反射高光谱图像进行独立成分(IC)分析和特征提取,利用所得特征对反射图像进行二次IC分析,对透射和反射光谱进行变量选择,最终分别建立基于反射图像、反射光谱、透射光谱的马铃薯损伤定性识别模型;对识别准确率高的模型做进一步优化,采用子窗口排列分析(SPA)算法对透射光谱的特征做二次选择得到3个光谱变量,并建立任意放置的马铃薯损伤识别最优模型。试验结果表明,基于反射图像、反射光谱建立的模型识别准确率较低,其中基于反射图像的马铃薯碰伤,侧对相机识别准确率最低为43.10%;基于透射光谱信息建立的模型识别准确率较高,损伤部位正对、背对相机的识别准确率均为100%,侧对相机为99.53%;马铃薯损伤识别最优模型对任意放置的损伤识别准确率为97.39%。应用透射高光谱成像技术可以检测任意放置方向下的马铃薯损伤,该研究可为马铃薯综合品质的在线检测提供技术支持。 相似文献
11.
基于高光谱成像技术的山楂损伤和虫害缺陷识别研究 总被引:1,自引:0,他引:1
采用高光谱成像技术(420~1 000 nm)对山楂的缺陷(表面的损伤以及虫害区域)进行识别研究。共采摘了134个样品,包含损伤果46个、虫害果30个、损伤及虫害果10个和完好果48个。考虑到山楂的花萼、果梗与损伤、虫害的RGB图像有相似的外观特征,容易造成误判,利用高光谱成像系统采集了损伤、虫害、完好、花萼和果梗五个区域一共230个山楂样本的高光谱图像,并提取相应的感兴趣区域(region of interest, ROI),得到了样本的光谱数据。使用标准归一化(standard normalized variate, SNV),卷积平滑(savitzky golay, SG),中值滤波(median filter, MF),多元散射校正(multiplicative scatter correction, MSC)方法进行光谱预处理,建立偏最小二乘(partial least squares method, PLS)判别分析模型,结果表明经过SNV预处理后的预测结果较好。最后选取SNV作为预处理方法。应用回归系数法(regression coefficients, RCs)从全波段中提取10条特征波段(483,563,645,671,686,722,777,819,837和942 nm),利用Kennard-Stone算法将各类样本按照3:1的比例随机分成训练集(173个)和测试集(57个),并对其建立最小二乘支持向量机(least squares-support vector machine, LS-SVM)判别模型,山楂缺陷的正确识别率为91.23%。然后,运用主成分分析(principal componentanalysis, PCA)进行10条敏感波段下单波段图像的数据压缩,分别采用“sobel”算子和区域生长算法“Regiongrow”识别出86个缺陷山楂样本的边缘与缺陷特征区域,得出单损伤、单虫害和损伤及虫害样本的识别率分别为95.65%,86.67%和100%。研究结果表明:采用高光谱成像技术可以对山楂的损伤、虫害、花萼和果梗进行定性分析和特征识别,该研究为山楂的缺陷无损检测提供了理论参考。 相似文献
12.
报道了地面长波红外遥测的新进展 ,具体阐述了窗扫时空调制傅里叶光谱成像技术的实现过程.演示装置基于角锥反射镜M ichelson干涉具 ,构成了空间调制干涉 ;采用了制冷型长波红外焦平面探测器组件 ,通过对数据立方体的采集、重组、基线校正、切趾、相位校正和傅里叶变换等处理 ,实现了长波红外波段高光谱成像.自研的CHIPED-1长波红外高光谱成像原理实验装置的探测灵敏度指标噪声等效辐射通量密度NESR在单次采样时达到了5.6 × 10-8 W · (cm-1 · sr · cm2 )-1 ,与商品化时间调制干涉高光谱成像仪相当 ;反映了技术的先进性 ,并留有较大的改进空间.通过测试聚丙烯薄膜的透过率曲线 ,CHIPED-1红外高光谱成像原理实验装置的光谱响应范围达到了11. 5 μm.文章还以室外高楼和乙醚气体的探测实验为例 ,研究了二维分布化学气体VOC的高光谱成像探测方法.在复杂背景和低试验浓度情况下 ,从同一波数的红外光谱切片上 ,观察不出乙醚蒸气的存在 ,但是进行了差谱处理后 ,可以清楚看到乙醚蒸气的空间分布.高光谱方法应用在有机蒸气VOC的红外探测领域 ,相对于宽波段热成像方法 ,具有灵敏度高、抗干扰能力强和识别种类多等诸多优势. 相似文献
13.
高光谱探测绿色涂料伪装的光谱成像研究 总被引:6,自引:0,他引:6
基于现有伪装涂料与植被反射光谱的本质差异,提出一种可有效识别当前所有绿色伪装涂料的高光谱成像方法.通过分析绿色伪装涂料与被子植物叶片的反射光谱及其一阶微分谱的差异,确定了星载和机载高光谱遥感探测中,可见光波段的绿色反射峰和780~1 300 nm的“近红外高原”波段反射率的波动性是识别绿色伪装涂料的有效光谱特征.对“近红外高原”波段的反射光谱进行成像是高光谱探测实现伪装目标可视识别的可行方法,尤其是对反射光谱一阶微分处理后进行成像可更加有效地识别植被环境中的绿色伪装涂料. 相似文献
14.
基于近地高光谱成像技术结合化学计量学方法,实现了黑豆品种的鉴别。实验以三种不同颜色豆芯的黑豆为研究对象,采用高光谱成像系统采集380~1 030 nm波段范围的高光谱图像,提取高光谱图像中的样本感兴趣区域平均光谱信息作为样本的光谱进行分析,建立黑豆品种的判别分析模型。共采集180个黑豆样本的180条平均光谱曲线。剔除明显噪声部分之后以440~943 nm范围光谱为黑豆样本的光谱,采用多元散射校正(multiplicative scatter correction,MSC)对光谱曲线进行预处理。分别以全部光谱数据、主成分分析(principal component analysis,PCA)提取的光谱特征信息、小波分析(wavelet transform,WT)提取的光谱特征信息建立了偏最小二乘判别分析法(partial least squares discriminant analysis,PLS-DA),簇类独立模式识别法(soft independent modeling of class analogy,SIMCA),最邻近节点算法(K-nearest neighbor algorithm,KNN),支持向量机(support vector machine,SVM), 极限学习机(extreme learning machine,ELM)等判别分析模型。以全谱的判别分析模型中,ELM模型效果最优;以PCA提取的光谱特征信息建立的模型中,ELM模型也取得了最优的效果;以WT提取的光谱特征信息建立的模型中,ELM模型结识别效果最好,建模集和预测集识别正确率达到100%。在所有的判别分析模型中,WT-ELM模型取得了最优的识别效果。实验结果表明以高光谱成像技术对黑豆品种进行无损鉴别是可行的,且WT用于提取光谱特征信息以及ELM模型用于判别黑豆品种能取得较好的效果。 相似文献
15.
OUYANG Ai-guo WAN Qi-ming LI Xiong XIONG Zhi-yi WANG Shun LIAO Qi-cheng 《光谱学与光谱分析》2021,41(12):3844-3850
为了控制水稻螟虫预警和喷洒农药用量,实现对水稻螟虫虫害的无损检测,提出了基于主成分分析特征波段检测方法和基于迭代阈值的最优波段检测方法,确定了水稻茎秆螟虫检测的特征波段和最优波段,提取出单波段和组合波段的图像来分割虫孔,从而实现水稻螟虫的精准的无损检测。首先通过高光谱得到的120个样品反射率信息分析确定了光谱区域为450~1 000 nm。基于主成分分析特征波段检测方法,对高光谱图像进行主成分分析,通过前五个主成分图像比较确定第三主成分图像为最佳,然后根据第三主成分图像中各个波段的贡献率来选取特征波长(668.8和750 nm),最后结合全局阈值分割和图像掩膜等图像处理方法实现对虫孔区域的判别。而利用基于迭代阈值的最优波段检测方法,在可见光波段450~750 nm范围和近红外波段750~1 000 nm范围内应用混合距离挑选最佳的单波段,通过单波段来确定组合波段,对单波段和组合波段进行迭代阈值分割,其中753.5 nm波长分割效果最好,故确定753.5 nm为最优波长,然后提取该波长的图像采用一种基于迭代阈值虫孔提取方法和形态学处理,最后能对水稻茎秆虫孔区域进行判别来实现水稻茎秆虫害是否存在。对60个虫害水稻茎秆和60个正常水稻茎秆进行检测,应用基于主成分分析特征波段检测方法在668.8和750 nm波长处检测率分别为95.8%和93.3%,而应用基于迭代阈值的最优波长检测方法在753.5 nm波长处检测率高达96.7%。说明利用基于迭代阈值的最优波长检测方法对水稻螟虫的检测更加精确,也说明所获取的特征波段和最优波段为以后水稻螟虫虫害的多光谱成像技术提供了理论参考。 相似文献
16.
梨在储藏、包装和运输等过程中均可能发生不同程度的机械损伤,若不及时剔除损伤梨,损伤可能会逐渐严重而演变成腐烂,造成严重的经济损失。为建立一种梨早期损伤检测及损伤时间评估的快速、无损检测方法,采用高光谱图像结合迁移学习模型对损伤早期水晶梨进行识别。以无损伤、挤压损伤24 h和挤压损伤48 h的水晶梨为研究对象,应用高光谱成像系统采集样品的高光谱图像,共获取无损伤、挤压损伤24 h和挤压损伤48 h的水晶梨高光谱图像各80帧。对高光谱图像进行主成分分析,选择主成分图像4,5,6(PC4,PC5,PC6)作为检测水晶梨损伤的特征图像,将3个主成分图像拼接后进行数据扩充共得到无损伤、挤压损伤24 h和挤压损伤48 h的特征图像各160帧。按照9∶1比例划分样本训练集和测试集后,分别建立了支持向量机(SVM)、k-近邻(k-NN)和基于ResNet50网络的迁移学习损伤识别模型。SVM、k-NN和基于ResNet50网络的迁移学习模型对测试集样本总体识别准确率分别为83.33%,85.42%和93.75%,基于ResNet50网络的迁移学习模型识别效果最佳,其对测试集中无损伤、挤压损伤24 h和挤压损伤48 h的样本正确识别率分别达到100%,83%和95%。该研究结果表明,高光谱图像技术结合基于ResNet50网络的迁移学习模型可实现水晶梨早期损伤检测,并对损伤时间有较好的预测效果,且损伤时间越长,识别准确率越高。 相似文献
17.
高光谱成像技术不仅可以获得样品的图像信息,每个像素点还包含了光谱信息,因其信息量丰富的特点已在食品安全检测方面得到了应用。该研究应用近红外高光谱成像技术检测面粉中偶氮甲酰胺。分别采集纯偶氮甲酰胺、纯面粉和面粉中10种不同浓度偶氮甲酰胺混合样品的高光谱图像。通过比较纯偶氮甲酰胺和纯面粉的平均漫发射光谱,找到两者区分度较大的4个吸收波段:1 574.38,2 038.55,2 166.88和2 269.91 nm。采用二阶导数对样品图像中的像素点光谱进行预处理,通过光谱角制图、光谱相关角和光谱相关性度量三种光谱相似性分析方法对混合样品中的偶氮甲酰胺像素和面粉像素进行检测。结果表明,预处理后的平均光谱不能有效检测面粉中偶氮甲酰胺;单像素点光谱结合光谱相似性分析实现了混合样品中偶氮甲酰胺像素和面粉像素的分类;分类结果的验证显示了偶氮甲酰胺像素和面粉像素的正确分类。研究结果为利用高光谱技术检测面粉中添加剂提供了方法支持,为食品中掺杂物的检测提供参考。 相似文献