首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
SDSS-DR10是美国SLOAN巡天望远镜发布的最新数据,包含了首批APOGEE光谱。这些海量的天文光谱除了可以用来探寻银河系的结构和进行多波段证认外,还蕴藏着包括白矮主序双星在内的特殊天体。白矮主序双星是一类特殊的双星系统,它由两颗主序星演化而来,包含了中低质量恒星演化的终点—白矮星,以及M矮星。白矮主序双星对于密近双星的演化和参数研究有积极的意义。目前针对这类特殊天体的发现主要使用测光筛选结合后期观测证认的方法,不但准确率低,而且需要耗费较多的人工处理时间,无法满足在海量光谱数据中快速发现目标天体的需要。提出一种适用于在海量天文光谱中自动、快速发现白矮主序双星的方法。该方法针对SDSS的DR10数据,使用改进的遗传算法对海量光谱进行自动识别,寻找白矮主序双星候选体。实验共发现了4, 140个白矮主序双星,通过交叉证认,其中24个是未被收录的新的源。验证了遗传算法在天文数据挖掘和自动搜索方面的有效性,为在海量光谱中快速发现特殊天体提供了另一途径。该方法也可用于在其他巡天望远镜的海量光谱中进行特定天体的自动识别。提供了新发现的白矮主序双星的赤经、赤纬等信息,补充了现有的白矮主序双星光谱库。  相似文献   

2.
白矮主序双星是一类致密的双星系统, 主星是一颗白矮星,伴星是一颗小质量的M型主序星。白矮主序双星光谱的数量相对较少,但对该类天体的研究对于进一步理解密近双星的演化, 特别是公共包层演化的物理机制等重要的天体物理热点有积极的意义。SDSS-DR12是美国SLOAN巡天望远镜发布的最新数据,基于前期实验在其中发现的4, 140个白矮主序双星光谱,通过最小二乘法对这些光谱进行分解后,使用模板匹配方法,测量了这批样本中两个子星的基本参数,包括有效温度、重力加速度、金属丰度等,并对结果进行了分析和统计,进一步丰富了白矮主序双星模板库。白矮主序双星的参数测量的主要问题是计算量大,在实验中使用了GPU技术,提高了匹配效率,在海量光谱处理方向进行了有益尝试。实验结果表明该方法对大型巡天望远镜的海量光谱参数自动处理有较重要的应用价值。  相似文献   

3.
白矮主序双星的光谱特征是决定其类型的关键因素,如何有效提取恒星光谱的特征是亟待解决的问题。提出一种新的方法,通过构建模型捕获恒星光谱数据的特征,对SDSS-DR10海量光谱进行自动分类。径向基神经网络作为一种有效的计算模型,在数值逼近和目标分类上均有较好的表现效果,但由于目前神经网络超参数的确定大多数依赖于实验经验,很大程度上制约了算法能力的发挥。在分析白矮主序双星光谱数据的高维分布特征的基础上,提出一种基于径向基神经网络的白矮主序双星自动分类模型,并以白矮主序双星的光谱特征为导向,针对恒星光谱提出了中心准则和宽度准则以确定神经网络的超参数,大幅度提高了模型的准确度。实验对分类模型进行数值训练并使用训练的模型对SDSS-DR10光谱数据进行白矮主序双星的自动分类,共发现4 631个白矮主序双星,通过Simbad,NED和Google交叉验证后发现其中有25个是未予以收录的新候选体。实验结果验证了该模型在大规模白矮主序双星自动分类任务中的有效性,新发现的白矮主序双星也为特殊天体的进一步研究补充了有效数据。  相似文献   

4.
通过卷积运算提取白矮主序双星的光谱特征是提高识别精度的有效手段。通过设计一维卷积神经网络,以判别学习的方式从大量混合光谱中拟合出具有稳定分布的12个卷积核,有效提取白矮主序双星的卷积特征。通过引入相对松弛的光谱类别先验分布,提出反贝叶斯学习策略以解决由于光谱抽样有偏带来的问题,显著提高识别精度。通过比较光谱在不同信噪比下的交叉熵测试误差,分析卷积特征的提取过程对光谱信噪比的鲁棒性。实验发现,基于反贝叶斯学习策略的一维卷积神经网络对白矮主序双星的识别准确率达到99.0(±0.3),超过了经典的PCA+SVM模型。卷积特征谱的池化过程以降低光谱分辨率的形式缓解了光谱噪声对识别精度的影响。当信噪比小于3时,必须通过增加模型在光谱上的迭代次数以形成稳定的卷积核;当信噪比介于3与6之间时,光谱卷积特征较为稳定;当信噪比大于6时,光谱卷积特征的稳定性显著上升,信噪比对于模型识别精度带来的影响可以忽略。  相似文献   

5.
美国斯隆数字巡天望远镜已经发布了第9期数据。这些海量的天文光谱数据除了可以用来进行大样本的研究,如探寻银河系的结构和进行多波段证认外,还蕴藏着稀少和特殊的天体,其中就包括矮新星。矮新星是激变变星中所占比例最高的一个亚型,发现更多的矮新星样本对于研究密近双星的演化和参数有积极的意义。目前针对激变变星这类稀少天体的发现主要使用测光粗筛选结合后期观测证认的方法,不但准确率低,而且需要耗费较多的人工处理时间,无法满足在海量光谱数据中快速发现矮新星候选体的需要。本文提出一种适用于在海量光谱中自动、快速发现矮新星的方法。该方法针对SDSS的DR9数据,先使用支持向量机约束主分量分析进行降维,确定特征空间的维数,然后再使用训练后得到的最优分类器对海量光谱进行自动识别,寻找矮新星候选体。实验共发现了276个矮新星,其中6个是未被收录的新的源,表明了该方法的有效性,为在海量光谱中快速发现稀少和特殊天体提供了有效途径。实验中发现的新结果补充了现有的矮新星模板光谱库,可以构造更准确的特征空间。本方法也可用于在其他的巡天望远镜如郭守敬望远镜的海量光谱中进行特殊天体的自动搜索。  相似文献   

6.
LAMOST-DR1是郭守敬望远镜正式巡天发布的首批数据,其数量超过目前世界上所有已知恒星巡天项目的光谱总数。这为进一步扩大特殊和稀少天体如激变变星的数量提供了样本,同时也对天文数据处理方法和技术提出了更高的要求。针对LAMOST的数据特点,提出一种能够在海量天体光谱中自动、快速发现激变变星的方法。该方法使用拉普拉斯特征映射对天体光谱进行降维和重构。结果表明不同类别的天体光谱在拉普拉斯空间中能够得到较明显的区分。在使用粒子群算法对神经网络的参数进行优化后,对LAMOST-DR1的全部数据进行了自动识别。实验共发现了7个激变变星,经过证认,其中2个是矮新星,2个是类新星,1个是高度极化的武仙座AM型。这些光谱,补充了现有的激变变星光谱库。本文验证了拉普拉斯特征映射对天体光谱进行特征提取的有效性,为高维光谱进行降维提供了另一途径。在郭守敬望远镜正式发布的数据中寻找激变变星的首次尝试,实验结果表明该自动化的方法鲁棒性好,速度快,准确率高。该方法也可用于其他大型巡天望远镜的海量光谱处理。  相似文献   

7.
SDSS DR8海量光谱中包含许多有研究价值的稀有天体,如特殊白矮星(DZ,DQ,DC)、碳星、白矮主序双星、激变变星等,如何在海量光谱中自动搜寻稀有天体有着极其重要的意义。提出一种基于核密度估计和K-近邻(K-nearest neighbor, KNN)相结合的方法在SDSS DR8 信噪比大于5的546 383个恒星光谱中搜寻稀有天体。首先对光谱进行高斯核密度估计,选取概率最小的5 000个光谱作为稀有类,概率最大的300 000个光谱作为普通类,然后进行KNN分类,同时也将5 000个稀有光谱的K个最近邻也作为稀有的天体,结果共有21 193条光谱。为了方便分析,对这些光谱聚类后进行人工检查。这些光谱主要包括由于数据缺失、红化、流量定标不准引起的问题光谱、行星状星云、没有物理联系的光谱双星、类星体、特殊白矮星(DZ,DQ,DC)、碳星、白矮主序双星、激变变星等。通过和SIMBAD,NED,ADS及一些主要的文献交叉验证,我们新发现了3个DZ白矮星、1个白矮主序双星、2个伴星为G型星的激变变星,3个激变变星的候选体、6个DC白矮星,1个DC白矮星候选体和1个 BL Lacertae(BL lac)候选体。还发现了1个有CaⅡ三重发射线和MgⅠ发射线的DA白矮星和1个光谱上表现出发射线的晚M恒星但测光图上像是一个星云或星系。  相似文献   

8.
随着天文学的发展以及天文望远镜观测能力的提升,国内外许多大型巡天望远镜将产生PB级的恒星光谱数据。恒星光谱是来自恒星的电磁辐射,通常由连续谱与吸收线叠加而成,其差异源于恒星的有效温度、表面重力加速度以及元素的化学丰度等。恒星光谱自动分类是天文数据处理的一项重要研究内容,是研究恒星演化和参数测量的基础。海量的恒星光谱对分类方法提出了高效、准确的要求。传统的人工分类方法存在速度慢、精度低等缺点,已经无法满足海量恒星光谱特别是低信噪比恒星光谱自动分类的实际需要,机器学习算法目前已经被广泛地应用于恒星光谱分类。恒星光谱的一个显著特征是数据维度较高,降维不但可以实现特征提取,而且可以降低计算量,是光谱分类的首要任务。传统的线性降维方法如主成分分析仅依据方差对光谱进行降维,不同类型的光谱在投影到低维特征空间后会出现交叉现象,而流形学习能够产生优良的分类边界,很好地避开重叠,有利于后续的分类。针对光谱数据维度较高的特点,研究了光谱数据在高维空间内的分布以及流形学习对高维线性数据降维的原理,比较了t-SNE和主成分分析两种降维方法对光谱数据降维的效果,并使用基于属性值相关距离的改进的K近邻算法进行光谱分类,最终对实验结果进行了分析并使用多种机器学习分类器进行比较和验证。采用Python语言及Scikit-learn第三方库实现了算法,对SDSS的12 000条低信噪比的恒星光谱进行实验,最终实现了光谱数据的高精度自动处理和分类。实验结果表明,对于光谱数据的降维处理,基于流形学习的t-SNE方法能够在高维光谱数据中恢复低维流形结构,即找出高维空间中的低维流形,并解出与之对应的嵌入映射,在降维过程中最大程度地保留不同类别光谱样本之间的差异从而产生明显的分类边界。特征提取后,使用机器学习分类器能够在测试数据集上达到满意的分类准确率。所使用的方法也可以应用于其他的巡天望远镜产生的海量光谱的自动分类以及稀少天体的数据挖掘。  相似文献   

9.
大规模光谱巡天项目如LAMOST等产生了海量极具研究价值的观测数据,如何对此数量级的数据进行有效的分析是当前的一个研究热点。聚类算法是一类无监督的机器学习算法,可以在不依赖于领域知识的情况下对数据进行处理,发现其中的规律与结构。恒星光谱聚类是天文数据处理中一项非常重要的工作,主要对海量光谱巡天数据按照其物理及化学性质分类。针对LAMOST巡天中的早M型矮恒星的光谱数据,使用多种聚类算法如K-Means,Bisecting K-Means和OPTICS算法做了聚类分析,研究不同聚类算法在早M型恒星数据的表现。聚类算法在一定程度依赖于其使用的距离度量算法,同时研究了欧氏距离、曼哈顿距离、残差分布距离和上述三种聚类算法搭配下的表现。实验结果表明:(1)聚类算法可以很好地辅助分析早M型矮恒星的光谱数据,聚类产生的簇心数据和MK分类吻合得非常好。(2)三种不同聚类算法表现不尽相同,Bisecting K-Means在恒星光谱细分类方面更有优势。(3) 在聚类的同时也会产生一些数量较少的簇,从这些簇中可以发现一些稀有天体候选体,相对而言OPTICS适合用来寻找稀有天体候选体。  相似文献   

10.
恒星光谱自动分类是研究恒星光谱的基础内容,快速、准确自动识别、分类恒星光谱可提高搜寻特殊天体速度,对天文学研究有重大意义。目前我国大型巡天项目LAMOST每年发布数百万条光谱数据,对海量恒星光谱进行快速、准确自动识别与分类研究已成为天文学大数据分析与处理领域的研究热点之一。针对恒星光谱自动分类问题,提出一种基于卷积神经网络(CNN)的K和F型恒星光谱分类方法,并与支持向量机(SVM)、误差反向传播算法(BP)对比,采用交叉验证方法验证分类器性能。与传统方法相比CNN具有权值共享,减少模型学习参数;可直接对训练数据自动进行特征提取等优点。实验采用Tensorflow深度学习框架,Python3.5编程环境。K和F恒星光谱数据集采用国家天文台提供的LAMOST DR3数据。截取每条光谱波长范围为3 500~7 500 部分,对光谱均匀采样生成数据集样本,采用min-max归一化方法对数据集样本进行归一化处理。CNN结构包括:输入层,卷积层C1,池化层S1,卷积层C2,池化层S2,卷积层C3,池化层S3,全连接层,输出层。输入层为一批K和F型恒星光谱相同的3 700个波长点处流量值。C1层设有10个大小为1×3步长为1的卷积核。S1层采用最大池化方法,采样窗口大小为1×2,无重叠采样,生成10张特征图,与C1层特征图数量相同,大小为C1层特征图的二分之一。C2层设有20个大小为1×2步长为1的卷积核,输出20张特征图。S2层对C2层20张特征图下采样输出20张特征图。C3层设有30个大小为1×3步长为1的卷积核,输出30张特征图。S3层对C3层30张特征图下采样输出30张特征图。全连接层神经元个数设置为50,每个神经元都与S3层的所有神经元连接。输出层神经元个数设置为2,输出分类结果。卷积层激活函数采用ReLU函数,输出层激活函数采用softmax函数。对比算法SVM类型为C-SVC,核函数采用径向基函数,BP算法设有3个隐藏层,每个隐藏层设有20,40和20个神经元。数据集分为训练数据和测试数据,将训练数据的40%,60%,80%和100%作为5个训练集,测试数据作为测试集。分别将5个训练集放入模型中训练,共迭代8 000次,每次训练好的模型用测试集进行验证。对比实验采用100%的训练数据作为训练集,测试数据作为测试集。采用精确率、召回率、F-score、准确率四个评价指标评价模型性能,对实验结果进行详细分析。分析结果表明CNN算法可对K和F型恒星光谱快速自动分类和筛选,训练集数据量越大,模型泛化能力越强,分类准确率越高。对比实验结果表明采用CNN算法对K和F型恒星光谱自动分类较传统机器学习SVM和BP算法自动分类准确率更高。  相似文献   

11.
恒星光谱数据的分类是天体光谱自动识别的最基本任务之一,光谱分类的研究能够为恒星的演化提供线索。随着科技的发展,天文数据也向大数据时代迈进,需要处理的恒星光谱数量越来越多,如何对其进行自动而精准地分类成为了天文学家要解决的难题之一。当前恒星光谱自动分类问题的解决方法相对较少,为此本文使用了一种基于卷积神经网络的方法对恒星光谱MK系统进行分类。该网络由数据输入层、四个卷积层、四个池化层、全连接层、输出层构成,与传统网络相比具有局部感知、参数共享等优点实验。在Python3.5的环境下编程,利用Tensorflow构建了一个简单高效的具有四个卷积层的卷积神经网络,并将Dropout作用于全连接层之后以防止过度拟合。Dropout的基本思想:当网络模型进行训练时,把一些神经网络节点按一定的比例丢弃,使其暂时不发挥作用。Dropout可以理解成是一种十分高效的神经网络模型平均方法,由于它不依赖于某些局部特征所以能够让网络模型更加鲁棒。实验中使用的一维恒星光谱图是取自LAMOST DR3数据库,首先进行预处理截取光谱3 600~7 300 Å的部分,均匀采样后使用min-max标准化法对其进行初始化。实验包括两部分:第一部分为依据恒星光谱MK系统对光谱进行分类,每一类的训练样本包含1 000条光谱数据,测试样本为400条光谱数据,首先通过训练样本对CNN网络进行训练,进行3 000次的迭代,用训练后的网络将测试样本进行分类以验证网络的准确性;第二部分为相邻两类的恒星光谱的分类,其中O型星数据集样本为250条光谱,其余类别恒星样本数据集均为4 000条光谱,将数据5等分,每次选取当中的一份当作测试集,其余部分当作训练集,采用5折交叉验证法求得模型准确率,用BP神经网络进行对比实验。选择对网络模型进行评估的指标包括精确率P、召回率R、F-score、准确率A。实验结果显示CNN在对六类恒星光谱进行分类时其准确率都在95%以上,在对相邻类别的恒星进行分类时,由于O型星样本量较少,所以得到的分类结果不太理想,对其余类别的恒星分类准确率都高于98%,以上结果都证明了CNN算法能够很好地解决恒星光谱的分类问题。  相似文献   

12.
矮新星是一类特殊而稀少的半相接双星。发现更多的矮新星对于深入研究物质转移理论、理解密近双星演化过程意义深远。利用深度学习技术提取天体光谱特征并进而分类是天文数据处理领域的研究热点。传统的自编码器是仅包含一个隐层的经典神经网络模型,编码能力有限,数据表征学习能力不足。模块化拓宽神经网络的深度能够驱使网络继承地学习到天体光谱的特征,通过对底层特征的逐渐抽象学习获得高层特征,进而提高光谱的分类准确率。以自编码器为基础构建了由输入层、若干隐藏层和输出层组成的基于多层感知器架构的深度前馈堆栈式自编码器网络,用于处理海量的光谱数据集,挖掘隐藏在光谱内部具有区分度的深度结构特征,实现对矮新星光谱的准确分类。鉴于深度架构网络的参数设置会严重影响所构建网络的性能,将网络参数的优化分为逐层训练和反向传播两个过程。预处理后的光谱数据先由输入层进入网络,再经自编码器算法和权值共享实现对网络参数的逐层训练。反向传播阶段将初始样本数据再次输入网络,以逐层训练所得的权值对网络初始化,再把网络各层的局部优化训练结果融合起来,根据所设置的输出误差代价函数调整网络参数。反复地逐层训练和反向传播,直到获得全局最优的网络参数。最后由末隐层作为重构层搭建支持向量机分类器,实现对矮新星的特征提取与分类。网络参数优化过程中利用均值网络思想使网络隐层单元输出按照dropout系数衰减,并由反向传播算法微调整个网络,从而防止发生深度过拟合现象,减少因隐层神经元间的相互节制而学习到重复的数据表征,提高网络的泛化能力。该网络分布式的多层次架构能够提供有效的数据抽象和表征学习能力,其特征检测层可从无标注数据中隐式地学习到深度结构特征,有效刻画光谱数据的非线性和随机波动性,避免了光谱特征的显式提取,体现出较强的数据拟合和泛化能力。不同层之间的权值共享能够减少冗余信息的干扰,有效化解传统多层次架构网络易陷入权值局部最小化的风险。实验表明,该深度架构网络在矮新星分类任务中能达到95.81%的准确率,超过了经典的LM-BP网络。  相似文献   

13.
恒星的分类对了解恒星和星系形成与演化历史具有重要的研究价值。面对大型巡天计划及由此产生的海量数据,如何迅速准确地将天体自动分类显得尤为重要。通过对SDSS DR9的恒星光谱数据进行深度置信神经网络(DBN)、神经网络和支持向量机(SVM)等算法分类的对比,分析三种自动光谱分类方法在恒星分类上的适用性。首先利用上述三种方法对K,F恒星进行识别分类,然后再分别对K1,K3和K5次型和F2,F5,F9次型识别,最后基于SVM支持向量机的二次分类模型,利用K次型的数据,构建剔除不属于K次型的模型。结果表明:深度置信网络对K,F型恒星分类效果较好,但是对K,F次型的分类效果不佳;SVM支持向量机在K,F型恒星分类以及相应的次型分类都具有较好的识别率,对K,F型分类效果要好于K,F次型的分类效果;BP神经网络对K,F型恒星以及其次型的识别一般;在剔除不属于K次型实验中,剔除率高达100%,可知SVM能够对未知的光谱数据进行筛选与分类。  相似文献   

14.
特殊恒星是金属丰度异常的恒星,其中包含的信息对于研究宇宙起源、太阳系的演变以及生命的演化都有着重要的意义。因此,特殊恒星的搜寻是国内外巡天项目中的重要目标。恒星光谱中包含着恒星的化学成分、物理性质以及运动状态等丰富的信息,它是开展恒星研究的重要依据。恒星的识别、分类以及特殊恒星的发现主要依据的是恒星光谱数据。随着LAMOST和SDSS等国内外大规模数字巡天项目的深入展开,恒星光谱的数据量达到了前所未有的高度,如此大的数据量为特殊恒星的发现提供了强有力的支撑。因此如何利用这些数据快速准确地发现特殊、稀少甚至于未知类型的恒星光谱是天文学研究的重要问题。数据挖掘是结合模式识别、机器学习、统计分析及相关专家背景知识,从数据中提取出隐含的过去未知的有价值的潜在信息的技术,其在处理大数据方面有着天然的优势,越来越多的数据挖掘方法被应用到巡天数据处理及分析之中。目前针对特殊恒星搜寻的数据挖掘算法主要包含随机森林、聚类分析以及异常值检测等,但随着巡天深度的拓展,观测的目标越来越暗,进而观测光谱的信噪比也随之变低。低信噪比光谱中存在着大量的无用信息,直接利用相关算法对其进行分析处理得到的结果往往存在很大的偏差。因此,如何从大量低信噪比恒星光谱巡天数据中有效地搜寻出特殊的恒星光谱,是当前面临的一个重要问题。由于低信噪比恒星光谱本身的特点,对于从中搜寻特殊恒星光谱的工作开展较少。为了解决此问题,在仔细研究光谱数据处理方法的基础上,针对低信噪比巡天数据中特殊恒星光谱的搜寻,提出了一种以主成分分析(PCA)和基于密度峰值聚类为基础的方法。该方法首先选取O,B,A,F,G,K和M各种类型的高信噪比恒星光谱,进行波长统一和流量插值后,利用主成分分析得到特征光谱;然后利用方差贡献率最大的前几个特征光谱对低信噪比的恒星光谱进行重构得到高信噪比的光谱;最后利用重构之后的高信噪比光谱进行聚类,聚类分析中得到的离群数据即为所要搜寻的特殊恒星光谱。在聚类时,考虑到恒星光谱数据本身的特点,采用了一种基于密度峰值的聚类方法来进行聚类及离群点的挖掘。实验表明,该方法能够在低信噪比的恒星光谱巡天数据中准确地搜寻出数量相对较少的特殊恒星。同时,也可应用于诸如LAMOST、SDSS等各种银河系巡天的光谱数据分析与挖掘中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号