首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
叶绿素含量高低反映植物健康状况,研究景区树种叶片叶绿素绝对值(SPAD)不同的光谱变化规律能为叶绿素高光谱监测波段识别与景区树种管理提供理论支撑。从琅琊山景区灌木和乔木类选取9个常见树种,探讨相同树种叶片SPAD值变化时的光谱差异,同时,横向对比相同SPAD值不同树种叶片的光谱特征,并深入分析不同树种叶片SPAD值与单波段原始光谱、光谱倒数、一阶微分、二阶微分及波段组合差值指数、归一化指数、比值指数、一阶微分归一化指数、一阶微分比值指数之间的关系。结果表明:9个所测树种叶片随着叶绿素SPAD值的升高,光谱变化规律各不相同,在可见光波段区分明显,总体上,光谱反射率最高的样本组SPAD值较低;叶绿素SPAD值相同时,在可见光波段,桂花较其余树种反射率整体较高; 在780~1 350 nm波段,广玉兰叶片反射率始终排前三,其余波段变化规律不明显;原始光谱反射率的二阶微分与海桐叶片SPAD值相关系数最大,一阶微分与其余8种相关性最高;与灌木、落叶乔木叶片SPAD值相关系数最大的光谱指数分别为差值指数、一阶微分归一化指数,与常绿乔木、不分树种相关系数最大的为一阶微分比值指数。  相似文献   

2.
无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究   总被引:6,自引:0,他引:6  
叶绿素含量是植物生长中的重要参数,与农作物产量密切相关。无人机遥感技术作为一种新的数据获取手段,在农业中已得到广泛应用。以玉米为目标作物,将具有不同光谱响应函数的两种轻小型多光谱传感器(MCA和Sequoia),同时搭载在六旋翼无人机上,获取不同氮肥水平下大田玉米花期的多光谱影像。利用无人机影像空间分辨率高的特点,在小区尺度上,分别计算了基于两种多光谱传感器的各26种植被指数,并将其与地面实测的叶绿素含量(SPAD)值进行回归分析,研究不同波段反射率对SPAD值的敏感性,利用不同多光谱传感器及植被指数预测SPAD值的精度及稳定性。结果表明,对于具有较宽波段的Sequoia,在550 nm(绿波段)、735 nm(红边波段)的反射率对SPAD值的变化较敏感,其中,550 nm与SPAD值的相关系数最大(R2=0.802 9)。而对于较窄波段的MCA,720 nm(红边波段)的反射率与SPAD值具有较高的相关性(R2=0.724 8),550 nm(绿波段)次之。此外,由于两传感器红波段的中心波长和波段宽度不同,660 nm(Sequoia)反射率与SPAD值的相关系数为0.778 6,而680 nm(MCA)反射率与SPAD值的相关性较小,仅为0.488 6。利用无人机多光谱遥感技术预测大田玉米的SPAD值精度较高,但对于不同的多光谱传感器而言,同一植被指数却表现出较大的差异,其中,红波段和近红外波段组合构造的植被指数RVI,NDVI,PVI和MSR差异较大,具有较宽波段的Sequoia传感器优于窄波段的MCA;此外,对于Sequoia相机,GNDVI与RENDVI预测SPAD值的精度较高,RMSE分别为3.699和3.691;对于MCA相机,RENDVI预测精度最高(RMSE=3.742),GNDVI预测精度低于RENDVI(RMSE=3.912);两传感器中MCARI/OSAVI预测SPAD值精度均较低,RMSE分别为7.389(Sequoia)和7.361(MCA)。在所有的植被指数中,利用绿波段和近红外波构造的植被指数(G类),以及用红边波段和近红外波段构造的植被指数(RE类),预测SPAD值精度更高,均高于红外和近红外波段构造的植被指数;利用更多波段(三个及以上)组合构造的复杂植被指数,并不能显著提高预测精度。就预测模型而言,MCARI1更适用于对数模型,可有效提高预测精度, 而其他植被指数变化不显著。研究还发现,在小区水平SPAD值的预测方面,除NDVI和TVI,Sequoia相机对于不同氮肥条件下植被覆盖度、阴影和裸露土壤等环境背景因素具有较强的抗干扰能力;而对于MCA相机来说,TVI,DVI,MSAVI2,RDVI和MSAVI对环境背景因素非常敏感,预测SPAD精度低;此外,去除环境背景因素并不总是能够提高SPAD值的预测精度。本研究对于利用无人机多光谱遥感技术进行高精度的叶绿素含量预测具有指导意义,对于精准农业的推广和应用具有一定的借鉴价值。  相似文献   

3.
高光谱技术已广泛运用于水质检测领域。探讨不同指标浓度下水质光谱变化规律及其光谱特征,能够为水质指标遥感光谱精准识别与定量提取提供理论基础。选取琅琊山景区不同水体景观共47个典型站位进行水质指标与光谱同步测量,提取每个检测点的7个水质指标及350~950 nm波段,探讨不同浓度水质指标光谱特征变化规律,分析水质指标与光谱反射率、反射率一阶微分、任意两波段反射率比值及差值之间的关系。结果表明: 各水质指标光谱曲线变化趋势一致,但各有差异,区分度最大的波段在可见光范围;不同盐度、溶解性总固体、电导率含量的水质光谱曲线变化较为接近,含量最高的样本光谱反射率最高,且变化最显著;浊度含量较高的水质样本光谱反射率变化较显著,700~950 nm波段不同浊度含量的水质样本光谱反射率区分不明显;溶解氧浓度为4~4.9 mg·L-1的水质光谱反射率在350~900 nm波段内明显低于其余样本;在350~380 nm波段范围,光谱反射率不随叶绿素含量变化而变化,叶绿素含量接近0的样本在400~950 nm波段低于其余样本;不同蓝绿藻藻蓝蛋白含量的样本光谱曲线相比其余水质指标在350~730 nm波段变化较大,交叉点较多。此外,水质指标与原始光谱反射率相关性较低,光谱一阶微分、差值指数、比值指数与各水质指标相关性整体有所提升。该研究可为水质高光谱遥感检测提供一定的理论基础。  相似文献   

4.
考虑水分光谱吸收特征的水稻叶片SPAD预测模型   总被引:1,自引:0,他引:1  
叶绿素是植被光合作用的重要色素,传统实验室方法测定叶绿素含量需破坏性取样且操作复杂。通过构建高精度SPAD光谱估算模型,可以实现对水稻叶片叶绿素含量的实时无损监测。以黑龙江省不同施氮水平下水稻为研究对象,采用SVC HR768i型光谱辐射仪共获取移栽后、分蘖期、拔节期、孕穗期、抽穗期共五个关键时期水稻叶片反射光谱数据。光谱探测范围350~2 500 nm。利用自带光源型手持叶片光谱探测器直接测定叶片光谱,光源为内置卤素灯。采用SPAD-502型手持式叶绿素仪同步测定水稻叶片的SPAD值。叶片水分是植物光合作用的基本原料,也间接影响着叶绿素含量。叶片含水量降低则会影响植物正常的光合作用,导致其叶绿素含量随之降低。因此将叶绿素敏感波段与水分吸收范围结合作为SPAD估算的输入量。随机森林模型是一个基于多个分类树的算法。算法在采样的过程中包括两个完全随机的过程,一是有放回抽样,可能会得到重复的样本,二是选取自变量是随机的。因此本文对叶片光谱反射率进行去包络线(CR)处理,综合考虑可见光近红外波段提取水稻叶片反射光谱特征参数和植被指数,综合分析光谱指标与SPAD相关关系,采用随机森林算法构建不同输入量的SPAD高光谱估算模型。结果表明: (1)水稻叶片SPAD与光谱反射率的相关系数在叶绿素敏感波段红波段范围(600~690 nm)、红边范围(720~760 nm)、水分吸收波段范围(1 400~1 490和1 900~1 980 nm)均为0.75以上;(2)在光谱参数与SPAD 的相关分析中,NDVI,DP2与水稻叶片SPAD值相关性最好,相关系数为0.811和0.808;(3)以结合水分光谱信息后的CR(V1, V2, V3, V4)为自变量所建立的随机森林模型精度最高,R2为0.715,RMSE为2.646,可作为水稻叶片叶绿素预测模型。研究结果揭示了不同品种水稻的光谱响应机制,提供了水稻叶片SPAD值高精度反演的技术方法,为监测与调控东北地区水稻正常生育进程提供技术支持。  相似文献   

5.
基于高光谱成像的南瓜叶片叶绿素分布可视化研究   总被引:3,自引:0,他引:3  
叶绿素浓度是植物生长的指示剂,而叶片的SPAD值则可以反映植物叶绿素含量,从而监测植物的生长状况。本文采用可见-近红外(380~1 030 nm)高光谱成像技术可以实现南瓜叶片SPAD值的可视化,同时根据叶片霜霉病疫情与叶绿素含量呈显著正相关进而可以快速诊断霜霉病疫情。通过测定健康叶片和感染不同霜霉病疫情的叶片光谱曲线,采用竞争性自适应重加权算法(CARS)进行特征波段的选择,可以得到10条特征波段,再结合偏最小二乘回归法(PLSR)进行南瓜叶片SPAD的预测。结果表明,通过对48个样本的训练,对23个样本进行预测,可以得到南瓜叶片SPAD较好的预测效果,其中RC=0.918,RMSECV=3.932; RCV=0.846,RMSECV=5.254; RP=0.881,RMSEP=3.714。根据叶片光谱特征波段与SPAD之间的线性回归方程可以计算叶片各个像素点的SPAD值,最后采用图像处理技术可以得到南瓜叶片SPAD的可视化分布图,同时也反映了霜霉病的感染分布,进而判断南瓜叶片的霜霉病疫情。该研究为监测植物生长状况及判别南瓜叶片霜霉病疫情奠定了理论基础。  相似文献   

6.
有冰海区油膜光谱特征研究   总被引:3,自引:0,他引:3  
近些年有冰海区石油的勘探、开发以及运输频度逐年上升,这增加了冰区溢油发生的风险。试验通过测量海水、碎冰、整冰等不同背景条件下轻柴油和原油油膜的可见光-近红外光谱反射率曲线,并与洁净的海水、碎冰和平整冰光谱曲线进行比较,得到能够有效识别冰区溢油的波段。测量结果表明:同一油种在不同背景下油膜的光谱反射率曲线有所差异,同一油种同一背景下由于分布形态不同光谱反射率曲线也有所差异。但同一油种的油膜仍呈现出许多区别于背景的共同特征:以海水、碎冰或整冰为背景的轻柴油油膜的光谱反射率曲线呈现“先低后高”、部分“相伴而行”的特点;海水、碎冰和整冰中原油油膜的光谱反射率曲线在750~770 nm区间出现楔状反射峰的典型特点。根据以上特点可以将溢油污染海水/海冰与洁净海水/海冰很好的区分开来,从而为遥感监测冰区溢油时的波段选择和溢油识别提供参考和依据。  相似文献   

7.
基于反射光谱技术的植物叶片SPAD值预测建模方法研究   总被引:3,自引:0,他引:3  
植物叶片SPAD值反映了植物叶绿素含量,对特定的植物也反映了氮含量。为了实现植物叶绿素含量的快速无损检测,利用光纤反射光谱技术对植物叶片SPAD值进行了预测建模研究。实验中选取70个样本作为建模集,50个样本作为校验集。通过叶片光谱比对,发现光谱红边段650~750 nm对SPAD预测建模有直接关系。实验确定了光强调节因子和叶片厚度影响因子。首先通过待定系数法构造出SPAD预测公式,然后用Visual Basic6.0设计的遗传算法进行参数寻优,最后确定最佳敏感波段为683.24~733.91 nm。分析表明,叶片厚度对SPAD反射光谱模型精度有显著影响。经过叶片厚度修正后的建模集拟合因子R2为0.865 8, 校验集拟合因子R2为0.916 1。结果表明, 利用反射光谱技术建立的SPAD预测模型是成功的, 从而可为仪器开发提供方法指导。  相似文献   

8.
荒漠-绿洲交错地带典型植被光谱特征研究   总被引:3,自引:0,他引:3  
植被对区域生态环境保护具有重要意义,尤其是在荒漠-绿洲交错地带,植被对土壤保持、提高土地的抗剪切性能有重要意义,对土壤风蚀和荒漠化防治的影响作用较大,利用高光谱技术测定并分析荒漠-绿洲交错带典型植被的光谱特性,不仅能够指导区域的植被遥感分类,还能够对植被实行远程监控提供依据。研究借助美国Field Spec 4高分辨率地物光谱仪,在研究区采集棉花、柽柳、梭梭和盐穗木等四种典型植被不同条件下的光谱数据,在对数据进行归类、筛选及综合处理后,分别对原始数据进行FDR(一阶导数反射率)和RLR(倒数取对数反射率)变换。利用原始数据、FDR和RLR分别分析不同植物的光谱敏感波段和表达方式。结果表明:植物的光谱曲线具有类似的变化特征,植被种类不同在“红边”区和近红外780~1 260 nm波段的表达方式区别较大;植物对可见光的吸收非常强烈,对不同波长的光吸收强弱变化会形成波峰和波谷;植物红边特征具有特殊性,蕴含植物自身的特有信息,三种方式的处理结果显示,光谱特征在经FDR计算后,植物光谱红边特征区差异性非常明显;利用三种不同方式处理后的光谱数据,分别来计算改进的植物NDVI值,经RLR变换后重新计算得到的NDVI值在植物不同种之间表现出较大差别,用于植物种类区分的效果明显。  相似文献   

9.
叶绿素含量是红枣树光合作用能力、生长状况、营养状况的指示剂,不同地理位置种植的红枣树受到自然、人为等因素的影响,叶绿素含量分布有所不同,该研究实地测定了若羌县枣树叶片高光谱反射率及表征叶绿素含量的枣树叶片SPAD(soil plant analysis development)值。为了高效无损地估算红枣树叶片SPAD值,计算了红枣树叶片SPAD值全局莫兰指数,以SPAD值和高光谱波段之间的相关性为基础,通过CP统计量计算重要程度高的特征波段,运用地理加权最小二乘支持向量回归GWLS-SVR(geographically weighted least squares-support vector regression)模型对红枣树叶片SPAD值进行预测,与多元线性回归(MLR)、支持向量机回归(SVR)模型比较并探讨GWLS-SVR模型估算红枣树叶片SPAD值的能力。结果表明:(1)光谱一阶导数可以有效去除噪声并突出光谱信息尤其是492~510,542~543,642~652,657~670和682~692 nm区间内显著的提高了与SPAD值的相关性。(2)CP统计量方法能够有效的选择敏感区间的特征波段,进而提高模型估算精度,由统计量方法计算出原始光谱重要程度最高的两个变量为595与696 nm,光谱一阶导数的特征波段为688 nm。其中对于同一个敏感波段区间的波段组合总有单个波段的统计量低于多个波段组合的统计量,这可能是相近波段间的较强共线性导致的。(3)若羌县红枣树叶片SPAD值存在显著的空间聚集性,全局莫兰指数为0.125 8(p<0.1),适合建立考虑空间位置的GWLS-SVR模型。(4)结合Bootstrap再抽样与t检验模型检验得到结合地理位置信息的GWLS-SVR模型总体上估算能力优于SVR和MLR模型,且结果高度显著(p<0.001),其中基于光谱一阶导数的GWLS-SVR模型为最优的红枣树叶片SPAD值估算模型(R2为0.975,MSE为1.082),能够为高光谱定量反演红枣树SPAD值进而快速无损的监测红枣生长状况提供一定参考。  相似文献   

10.
可见与近红外波段光谱反射率数据库是颜色科学与技术和遥感目标地物分类识别领域等研究与应用的基础数据。主成分分析(PCA)在光谱数据分析、光谱重建、高光谱数据降维以及遥感图像分类等方面有广泛应用。测量并建立了云南公园常见绿化植物柳树、樟、红花檵木、蓝花楹等48种植物150条叶片从可见光到近红外波段光谱反射率数据库,波长范围400~1 000 nm、间隔4 nm。并且分别对可见与可见到近红外两种波段范围进行PCA研究。结果表明:不同植物叶片按照红、绿、黄相同色相的光谱反射率曲线基本相似;但对于同一种植物,在可见光波段400~700 nm,因为体内叶绿素、叶黄素、叶红素和花青苷含量的不同,光谱反射率曲线有较大的差异;在近红外波段700~1 000 nm,所有植物叶片光谱反射率仅仅是大小不同,而同一植物光谱反射率基本不随波长变化。PCA分析表明:在可见光和可见与近红外波段前三个主成分的累积贡献率分别达到98.62%和94.97%。数据库及其PCA分析结果将为自然物体光谱重建、多光谱成像技术和遥感目标地物分类识别等领域应用提供支撑。  相似文献   

11.
利用高光谱反射率光谱的特征波段构建光谱指数,建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型,分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据,利用小波分析法对原始光谱反射率曲线进行降噪处理,并对基于积分运算的光谱指数NAOC进行简化,获得了基于双波段简化运算的优化光谱指数。利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数,获得了以积分限(a,b)为横、纵坐标的相关系数二维矩阵,并绘制相关性等势图,得到相关系数最高的3个波段组合:R(641,790)(0.872 6),R(653,767)(0.871 7)和R(644,774)(0.871 6),计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值,按照2∶1的比例划分为建模集和验证集,建立了三种水稻叶片SPAD反演模型:偏最小二乘回归(PLSR)、支持向量机(SVM)和BP神经网络模型。结果显示:利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79,归一化均方根误差NRMSE则小于5.4%。其中BP神经网络相对于其他两种模型具有较高的拟合度,预测精度也相对较高,建模集R2=0.842 6,NRMSE=5.152 7%;验证集R2=0.857,NRMSE=4.829 9%。总体来看,基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的;对比分析3种模型反演结果发现,BP神经网络对水稻叶片SPAD的反演效果较好。该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。  相似文献   

12.
露天开采会彻底改变原有土地利用景观格局,直接破坏当地生态环境,甚至会影响附近居民的生产和生活,因此越来越多的学者开始关注开采扰动。先前有关利用时序多光谱影像提取开采扰动的研究区集中于扰动形式单一的森林区。而我国露天煤矿大多集中于草原区,且我国东北部的草原矿区因其脆弱的生态环境以及其他多种扰动形式的存在,使得开采扰动识别更加困难。为明确我国东北部生态脆弱区草原露采场的开采扰动,以胜利矿区为例,利用1986年-2017年27期Landsat多光谱遥感影像,基于归一化植被指数NDVI(normalized difference vegetation index)的长时间序列轨迹变化特征(为了去除物候、云和阴影等对时序多光谱影像的影响,利用BISE-WT滤波器对原始NDVI时间序列进行滤波处理, 有效地去除时序NDVI数据中的噪声并同时保留有效信息),经过样本点训练,获得CV阈值(变异系数coefficient of variation)和Max阈值(植被阈值),构建CV-Max扰动识别模型,提取研究区的扰动分布。并利用植被阈值,分析NDVI时序轨迹,获得扰动年际信息,重构扰动历史地图;进而通过分析研究区典型地物的光谱特征,构建裸煤提取规则,以此来提取研究区的裸煤分布;最后通过构建裸煤及扰动区两者间的拓扑关系,进行空间拓扑叠置分析,从而获得开采扰动信息。经过精度验证,开采扰动的提取精度达到93.17%(Kappa系数=0.85),扰动年际信息提取精度达到83.35%(Kappa系数=0.81)。结果表明:在研究期间,空间上,开采扰动面积占研究区总面积的8.90%;时间上,开采扰动的发生集中于2000年-2009年,期间开采扰动像元占开采扰动总像元的76.70%;1988年-1998年矿区属于土地损毁初始期,2000年-2005年矿区属于土地损毁加速期,2006年-2009年矿区属于土地损毁高峰期,2010年-2017年开采扰动像元占比趋势比较平缓且持续处于较低水平,矿区土地损毁范围基本稳定。所提出的针对我国东北部生态脆弱性草原矿区,基于时序多光谱影像,利用植被指数NDVI和裸煤光谱特征提取开采扰动信息的方法是可行的,该研究结果可为干旱、半干旱草原露天矿区的可持续发展提供数据和理论方法支撑。  相似文献   

13.
矿业废弃地重构土壤重金属含量高光谱反演   总被引:3,自引:0,他引:3  
矿产资源对工业和国民经济的发展有重要的作用,但是随着矿业开采规模的扩大,资源枯竭、经营不善而形成的矿业废弃地越来越多。由于长时间受到采矿的影响,矿业废弃地土壤中存在大量的重金属元素,高浓度重金属可能会对环境和人体产生影响。土地复垦是整治污染、退化土壤再利用的重要方法,对重构后的土壤进行重金属含量检测是衡量土地复垦成效的重要指标,需要长期进行跟踪监测。传统的化学检测方法效率低、成本高、无法实现重金属大范围检测。高光谱是一种新兴的、发展潜力巨大的技术,在环境保护,资源利用,区域可持续发展等方面有着广泛的应用。经过近几十年的快速发展,仪器精度逐渐提高,检测方法逐渐成熟,为实现土壤重金属高效、便捷检测提供了可能。正常土壤重金属含量一般相对较低,采用光谱测量重金属含量较为困难,但铁矿开采区矿业废弃地由于土壤中的铁元素较多,会使土壤中的重金属的存在和聚集形式发生变化,影响重金属对光谱的响应,从而使土壤光谱反射率与重金属含量之间关系更加明显。以湖北省大冶市复垦矿区研究区,采样化学检测方法获取土壤重金属(As,Cr,Zn)含量;借助于美国ASD公司生产的FieldSpec4地物光谱仪(350~2 500 nm)获取土壤反射率,应用一阶微分、倒数对数、连续统去除法分别对反射率曲线进行预处理,提取出光谱特征波段,分析三种重金属元素与光谱特征间的相关性并建立逐步回归模型。研究表明,光谱数据预处理可使光谱特征波段更加明显,其中一阶微分和连续统去除法的效果最为明显。3种重金属元素的特征波段为495,545,675,995,1 425,1 505,1 935,2 165,2 205,2 275和2 355 nm。将土壤重金属含量与光谱特征波段之间做相关性分析,三种重金属都表现出了与光谱曲线的相关性,相关系数大部分都达到了0.5以上,最大相关系数为0.663,由于重金属种类和预处理方式的不同会导致相关性系数存在明显的差异。利用与土壤重金属相关性最大的特征波段建立三种重金属反演模型,并以反演模型r大小选择每种重金属的最优反演模型。由于重金属种类的不同,模型的选择也有差异,Cr和Zn一阶微分逐步回归为最佳反演模型,重金属As连续统去除法逐步回归为最佳反演模型。通过检验,三种重金属中Cr反演效果最好,RMSE为2.67,其次是Zn和As。对比当前不同检测手段可知,基于土样和光谱数据预处理的土壤重金属含量地物光谱仪高光谱反演是比较理想的。可为矿业废弃地土壤重金属高光谱反演提供参考。  相似文献   

14.
松材线虫自然侵染后松树不同感病阶段针叶光谱特征变化   总被引:5,自引:0,他引:5  
采用ASD野外光谱仪测量了黑松和马尾松在松材线虫自然侵染后不同感病阶段的反射光谱,分析了其中光谱特征参数及叶绿素变化情况.研究表明:(1)中红外波段反射光谱曲线对松树发病初期有一定的指示作用;(2)红边位置、绿峰高度、红谷反射率、红边斜率、水分胁迫波段反射率等参数的动态变化趋势与松材线虫侵染后两种松树的病害特征是一致的;(3)随病害程度加深两种松树叶绿素含量逐渐降低,且与光谱特征参数之间存显著线性关系.研究结果为利用高光谱遥感技术进行松材线虫病监测与预警提供参考,同时为针对不同发病阶段采用不同的措施治理松材线虫病提供新的实验依据.  相似文献   

15.
OLI与6SV的褐土带煤炭开采沉陷区土壤有机碳反演   总被引:1,自引:0,他引:1  
遥感反演已广泛应用于区域土壤理化性质的动态监测,但是鲜有针对有机碳含量低、下垫面不均一等土壤光谱特性不显著区域的研究。黄土高原褐土带地形多样,丘陵广布,有机碳含量低。采煤活动引起大面积土壤退化,土壤光谱特性受到强烈干扰,制约了区域尺度土壤有机碳(soil organic carbon)含量遥感反演精度。以山西省褐土带典型采煤沉陷区为例,借助地表反射率和室外实地采集的样本数据对褐土带煤矿开采沉陷区土壤有机碳含量进行反演。采用结合高空间、时间分辨率辅助气象数据的6SV(second simulation of a satellite signalin the solar spectrum-vector)模型和FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)模型对研究区Landsat8 OLI影像的大气校正方法进行对比实验,分析其对褐土带采煤沉陷区土壤光谱曲线及有机碳含量的影响,识别敏感波段。选择原始光谱反射率(R)和平方根()、倒数的对数log(1/R)、一阶微分(R′)等数学变换形式,利用多元线性回归(MLR)、BP神经网络(BP neural net)和偏最小二乘回归(PLSR)建立土壤有机碳反演模型。结果表明:6SV模型大气校正的效果要优于FLAASH模型,可以有效消除大气、地形对于反射率的干扰,可见光波段反射率降低而近红外波段明显上升,不同有机质含量等级土壤反射光谱特性分明;640~670,850~880,1 570~1 600和2 110~2 290 nm波段对土壤有机碳含量指示性强;相较于多元线性回归(决定系数R2为0.765)、BP神经网络(R2为0.767),偏最小二乘回归模型反演精度最高(R2为0.778);结合高空间、时间分辨率辅助气象数据的6SV大气校正模型与偏最小二乘回归建模能显著提高褐土带采煤沉陷区土壤有机碳的反演精度。在此基础上预测研究区2013年-2015年土壤有机碳含量,研究发现:研究区土壤有机碳含量中部高,两侧低,复垦使土壤有机碳含量得到恢复。研究结果可用于揭示黄土高原褐土带采煤沉陷区土壤有机碳含量的时空分布特征,为改进区域土壤光谱分析、土地复垦评价、建立褐土带采煤沉陷区碳通量观测网络和土壤碳库估算提供理论和技术支持,对研究区域甚至全球范围褐土带生态可持续发展提供依据。  相似文献   

16.
沙生植物资源量大、生长快、占地面积广,是改善环境和治理荒漠化的主要植物,但其饲用价值没有得到充分利用。目前由于畜牧业的规模化、集约化发展,出现牧草匮乏,商品牧草供应量严重不足,导致畜草矛盾日益增加。沙生植物平茬收获,充分挖掘沙生植物的潜在饲用价值,开发、生产非常规饲料,对推动我国荒漠、半荒漠地区的畜牧业发展和生态修复至关重要。选择内蒙古阿拉善左旗珍珠猪毛菜(简称珍珠)、红砂、油蒿、骆驼刺、柠条锦鸡儿(简称柠条) 和沙米六种常见沙生植物为研究对象,利用光谱学方法测定样品中粗蛋白(CP)、粗脂肪(EE)、粗纤维(CF)、钾(K)、钠(Na)和钙(Ca)等14种营养成分和亮氨酸(Leu)、赖氨酸(Lys)、蛋氨酸(Met)、胱氨酸(Cys)、苏氨酸(Thr)等17种氨基酸含量,并与四种常规饲料(优质玉米、NT-2级稻谷、GB-2级大豆和GB-3级苜蓿草粉)进行比较,获得沙生植物营养价值和潜在饲用价值的评价结果。结果表明:(1)六种沙生植物的CP含量、EE含量和矿物元素含量均处于较高水平,CF含量高于泌乳母牛日粮中CF占日粮干物质的13%,等同于或优于以上四种常规饲料。(2)该研究中氨基酸含量和氨基酸化学评分(CS)的结果为:六种沙生植物都含有17种氨基酸,且组成较为均衡。其中油蒿、骆驼刺、柠条和沙米中的必需氨基酸含量及营养价值均高于优质玉米和NT-2级稻谷。Leu和Lys分别是3种沙生植物红砂、骆驼刺、柠条和珍珠、优质玉米、NT-2级稻谷的第一限制氨基酸,而Thr和Met+Cys分别是油蒿和沙米、GB-2级大豆、GB-3级苜蓿草粉的第一限制氨基酸。(3)主成分分析结果表明,珍珠、柠条和沙米的营养价值高于常规饲料GB-3级苜蓿草粉,且六种沙生植物的营养价值均高于优质玉米和NY-2级稻谷。综上表明,研究区常见的六种沙生植物不仅具有生长快、地上生物量大和耐刈割等特点,更具有较大的饲用开发潜力,是荒漠、半荒漠地区良好的饲料来源,研究结果为指导饲料氨基酸的平衡和合成氨基酸提供可信的实验依据和理论依据。  相似文献   

17.
叶绿素含量是作物光合能力与营养评价的重要指标,因此快速检测作物叶绿素含量与分布可为作物营养动态分析与长势评估提供支持。基于RGB(Red, Green, Blue)和NIR(Near Infrared)多光谱图像的获取,开展玉米作物营养状态分布光谱学成像检测。构建了多光谱图像采集平台获取RGB和NIR图像,研究了基于光饱和校正算法的RGB图像的光饱和校正与NIR图像去噪方法,通过图像的匹配分割,冠层的提取校正,建立了基于冠层图像的作物SPAD值检测模型与分布成图。采集15株玉米植株RGB-NIR图像,并同步获取不同植株,不同位置共68个叶绿素含量指标SPAD值。首先对RGB图像进行光饱和校正,再对NIR图像进行滤波和图像增强,其次对RGB和NIR图像进行了SURF(speeded-up robust features)和RANSAC(random sample consensus)图像匹配,利用RGB图像的颜色特征,采用ExG(Extra Green)和OTSU算法生成分割掩模,对RGB图像和NIR图像进行分割提取,提取图像的R, G, B和NIR分量,利用4阶灰度板进行反射率校正,然后计算作物图像中像素级PSPAD值,并建立图像PSPAD值与叶绿素仪SPAD值的拟合模型,最后绘制作物SPAD分布图。通过HSI(Hue, Saturation, Intensity)彩色模型中的I分量直方图对比去饱和前后光分布范围,以作物SPAD值分布图验证光饱和校正算法对作物叶绿素含量分布检测提升的效果。RGB图像光饱和校正前I分量集中在[140~180]之间,光饱和校正后的RGB图像I分量集中在[85~130]之间, 校正了相机成像时产生模糊和RGB图像饱和。对分割后的RGB图像和NIR图像提取R,G,B,NIR分量进行4阶灰度板校正,相关系数分别为0.829,0.828,0.745和0.994,进而生成R,G,B和NIR四波段的反射率伪彩色图像,反射率RNIRRCRRRB。体现了作物的在蓝光和红光区域吸收光,在绿光区域和近红外区域反射光的光谱特性。校正前后的R和NIR分量反射率计算图像PSPAD值拟合叶绿素含量指标SPAD值的模型结果显示,校正前R2为0.332 6,校正后R2为0.619 3,绘制作物的SPAD特征分布图,可为作物的营养动态快速分析与分布检测提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号