首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
红外光谱法测定杉木/聚丙烯复合材料中木粉和塑料含量   总被引:2,自引:0,他引:2  
木塑复合材料(wood plastic composites, WPCs)中木材和塑料的配比影响其性能和价格,传统的热化学方法尚不能快速准确地测定WPCs中木塑配比。为探究红外光谱法定量分析WPCs中木粉和塑料的可行性,以杉木、聚丙烯(PP)以及各种添加剂为原料,经过木粉改性、混料和挤出造粒制备出13种不同杉木含量(9.8%~61.5%)的WPCs。采用KBr压片法对制得的样品进行红外光谱分析,通过对比WPCs、杉木、PP以及其他添加剂的红外谱图,确定杉木特征吸收峰为1 059,1 033和1 740 cm-1,1 377,2 839和841 cm-1表征PP特征峰。建立木粉含量、PP含量和二者特征吸收峰峰高比之间的相关关系,结果表明,木粉含量与I1 059/I1 377I1 033/I1 377之间均存在极强的线性相关,R2分别为0.992和0.993,PP含量与I1 377/I1 740I2 839/I1 740之间存在高度线性相关,R2分别为0.985和0.981,形成了杉木/PP复合材料中木粉和PP含量的红外光谱定量分析方法,木粉含量预测方程依次为y=53.297x-9.107和y=55.922x-10.238,PP含量预测方程依次为y=6.828 5x+5.403 6和y=8.719 7x+3.295 8。方法精密性和准确性检验表明,方法可重复性强、准确度高,木粉与塑料含量预测平均相对误差约为5%,与传统热化学方法相比,预测精度有较大提高,更重要的是红外光谱法操作更为简便。该研究为杉木/PP复合材料中木粉及塑料含量的测定提供了一种简便、快速、准确的方法。  相似文献   

2.
木塑复合材料(wood plastic composites, WPC)中生物质和塑料的比例影响其物理力学性能和价格。建立一种快速、准确的方法预测WPC中生物质和塑料的含量对于WPC市场的进一步发展具有重要作用。现有的检测方法主要为热分析法,然而,热分析法固有的缺陷(包括检检测时间长、测精度低、操作复杂等)严重限制了其应用范围。为此,本研究采用红外光谱(FTIR)结合偏最小二乘法(PLS)对毛竹/聚丙烯(PP)复合材料样品中毛竹及PP的含量进行了快速测定。以毛竹为生物质填料、PP为基体材料,同时加入一定量的添加剂,采用挤出成型法制备了42个不同毛竹/PP比例的WPC样品。采用KBr压片法收集42个WPC样品的红外光谱数据,利用PLS-2和完全交互验证方式建立样品中毛竹及PP含量和光谱数据间的相关性模型。内部交互验证结果表明,对原始光谱进行一阶导数和SNV预处理后,选择1 800~800 cm-1 波段建立的模型性能最佳。毛竹和PP含量的校正模型决定系数R2均为0.955,校正标准偏差SEC分别为1.827和1.848。毛竹和PP含量的预测模型决定系数R2均为0.950,交互验证标准偏差SECV分别为1.927和1.950,RPD值均为4.45。外部验证结果表明,毛竹和PP含量相对预测偏差均低于6%,FTIR结合PLS法可以同时快速、准确地预测毛竹/PP复合材料中毛竹及PP含量。  相似文献   

3.
田间原位可见-近红外光谱(VIS-NIR)能够有效的提高土壤属性的检测效率,但由于原位土壤中水分因素的影响,土壤属性的预测精度很难达到预期。如何有效去除土壤中的水分对土壤其他属性光谱预测的影响,是利用田间原位光谱高精度预测土壤属性所面临的难题,也是土壤光谱技术由室内转向田间的突破口。该问题的有效解决,可减除土壤样品的采集与室内预处理等过程,实现土壤属性的田间原位光谱测定。以新疆南部地区阿拉尔垦区十二团棉田为研究区,采用网格采样法共采集了116个0~20 cm深度的表层土壤样品,剔除1个异常值样品,得到115个有用样品,利用SR-3500型便携式地物光谱仪采集了231个样点的田间原位光谱数据,土样经风干、研磨和过筛等处理后测定其室内光谱和有机质含量。利用Kennard-Stone算法将115个土样分为69个转换子集及46个预测集,采用外部参数正交化法(EPO)、光谱直接转换法(DS)及光谱间接转换法(PDS)三种去除水分算法结合原位光谱反射率(R)、反射率一阶微分(R′)、反射率对数(LOG(R))以及反射率倒数(1/R)四种数学变换方式,运用随机森林(RF)模型进行不同组合模型的构建及精度评价。结果表明:(1)土壤有机质含量越高,土壤光谱反射率越低。土壤田间原位光谱反射率低于土壤室内光谱反射率;(2)室内光谱反射率与土壤有机质含量之间的相关性大于田间原位光谱,室内光谱经一阶微分变换后与土壤有机质含量之间的相关性显著提升。(3)土壤室内光谱反射率模型预测精度(R2=0.86, RPD=2.08, RMSE=1.55 g·kg-1, MAPE= 0.14)高于田间原位光谱反射率模型(R2=0.71, RPD=1.49, RMSE=2.17 g·kg-1, MAPE=0.20)。在去除水分算法模型中,以EPO一阶微分模型去除水分效果最好,决定系数R2由0.71提高到0.83,RPD由1.49提高到2.04,RMSE由2.17 g·kg-1降低至1.58 g·kg-1,MAPE由0.20降低至0.14。本研究实现了去除土壤水分因素的影响,提高了田间原位光谱预测土壤有机质的精度,为南疆棉田大尺度土壤有机质的预测及土壤肥力的评价提供了重要的参考。  相似文献   

4.
热值是煤质特性的重要参数之一,很大程度上影响着燃煤锅炉的运行。为了克服传统检测方法所存在的问题,将激光诱导击穿光谱(LIBS)应用于燃煤热值的定量分析。煤的结构复杂,所含的元素种类众多,包括了主量元素、次量元素和痕量元素,致使煤的LIBS光谱信息复杂。如何有效提取LIBS光谱信息,实现准确的定量化测量是LIBS在煤特性检测中发挥作用的前提和基础。近年来,随着人工智能技术的发展,相关的分析技术也开始应用于煤的工业指标分析和热值预测中。为实现煤样品中LIBS光谱信息的有效提取,同时为克服常规的分析方法易出现的过渡拟合、收敛性不好等问题,提出采用结合K-fold Cross Validation(K-CV)参数优化的支持向量机(SVM)回归方法,实现LIBS定量分析煤中的热值。SVM方法是结构风险最小化的近似实现,可用于模式分类和非线性回归。为了得到有效的LIBS分析模型,实验选用44种电厂常用的热值含量不同的煤样作为实验对象,选择其中33个作为训练集,剩余11个为测试集。利用搭建的LIBS实验系统获取所选煤样品的等离子体发射光谱数据,首先分析了SVM热值回归模型的参数-惩罚因子C、核函数参数g与模型精度的关联,确定Cg最佳取值范围,然后分别建立了基于LIBS全谱和某些元素(非金属元素和金属元素)特征光谱的SVM回归模型。利用训练集光谱数据,结合K-CV法得到热值SVM回归模型的最优参数Cg的值,建立基于SVM最优参数的煤热值定量分析模型。然后将测试集的光谱数据作为输入量用于测试所建立模型的可靠性,得到分别采用全谱、非金属元素特征光谱、非金属与金属元素特征谱相结合的热值定量分析模型,其决定系数R2均达到0.99以上,均方误差分别为0.12,0.17和0.06 (MJ·kg-1)2,预测平均相对偏差分别为1.2%,1.23%和0.69%。结果表明:基于K-CV参数优化SVM回归方法可用于LIBS技术实现燃煤热值的定量分析,且可得到较高的分析精确度和准确度;同时通过对比选用不同的光谱特征的定量分析模型可知,采用非金属与金属元素的特征光谱所建立的基于K-CV参数优化SVM的热值定量模型,能够有效提高LIBS应用于快速检测煤热值的精度和准确度,实现煤热值的准确预测。  相似文献   

5.
为了探究反射光谱检测水体中毒死蜱农药的可行性,使用由ASD公司的FieldSpecPro地物波谱仪构成的高光谱采集系统在室内、室外环境获取两种不同浓度区间的毒死蜱样品的光谱数据。基于偏最小二乘(PLS)和主成分分析(PCA)算法分别对毒死蜱样品光谱数据建立全波段定量模型,结果两种模型的预测能力均较高。通过相关性分析(CA)计算相关系数来选择毒死蜱样品光谱的特征波长,其中浓度区间为5~75 mg·L-1的室内、室外实验光谱的特征波长为388,1 080,1 276 nm和356,1 322,1 693 nm,浓度区间为0.1~100 mg·L-1的室内外实验样品光谱的特征波长为367,1 070,1 276,1 708 nm和383,1 081,1 250,1 663 nm。结合PLS算法建立样品特征波长光谱数据的定量模型,结果与全波段模型相比,浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波长模型的校正集决定系数R2C分别提高至0.987 5和0.999 2,预测集决定系数R2P分别提高至0.989 4和0.994 4,校正集均方根误差RMSEC分别降低为2.841和0.714,预测集均方根误差RMSEP分别降低为1.715和1.244;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波长PLS模型的校正集决定系数R2C分别提高至0.998 3和0.998 8,预测集决定系数R2P分别提高至0.998 4和0.999 0,校正集均方根误差RMSEC分别降低为1.383和1.186,预测集均方根误差RMSEP分别降低为1.510和1.229,验证集标准差与预测均方根误差的比值(RPD)有所增加,尤其是针对浓度区间为0.1~100 mg·L-1的实验,RPD值显著增加至21.7,说明基于特征波长建立的毒死蜱样品定量模型具有较高精度的预测能力,但是通过不同浓度区间范围的对比实验发现,ASD地物光谱仪对低浓度的毒死蜱溶液预测的相对误差偏大,存在客观上的检测下限。为了保证不同试验条件下的毒死蜱农药的特征波长都得到分析,增强模型使用的普适性与鲁棒性,根据特征波长选择出4个波段,即351~393,1 065~1 086,1 245~1 281和1 658~1 713 nm作为特征波段。特征波段模型的波长变量个数共38个,相比于全波段模型的432个波长变量,模型变量精简了91.2%,其中浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波段模型的R2C分别为0.993 7和0.987 8,R2P分别为0.979 8和0.998 2,RMSEC分别为1.690和2.516,RMSEP分别为1.987和0.659;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波段PLS模型的R2C分别为0.9882和0.9807,R2P分别为0.9391和0.9936,RMSEC分别为3.345和3.942,RMSEP分别为8.996和2.663,且四种实验情况下的模型RPD值均大于2.5,满足定量分析条件。因此采用高光谱采集系统对室内和室外环境中毒死蜱农药的快速检测具有一定的可行性,此研究结果对有机磷农药等面源污染物快速检测有实际的应用价值,可为农田水体有机磷农药快速检测仪器的开发提供理论基础。  相似文献   

6.
当近红外光谱信息远大于样本量时,对光谱信息进行自动变量选择进而建立光谱与样品含量的稀疏线性模型重要且具有挑战性。利用近红外光谱,将变量选择方法Elastic Net用于聚苯醚生产过程中微量成分邻甲酚的测量,建立近红外光谱与邻甲酚含量之间的定量校正模型,并将其模型预测效果与Lasso方法进行对比。在变量数目远远大于样本量的情形下,Lasso方法虽可实现变量选择,但由于对系数的过度压缩,使得模型的预测精度受到影响,而Elastic Net通过增加L2惩罚项避免了过多删失数据,可以提高模型预测精度。为了验证Elastic Net方法的模型性能指标,用复相关系数R2和调整的复相关系数R2a来评价模型的可解释性,利用平均相对预测误差MRPE(mean relative prediction error)和预测相关系数Rp来评价模型的预测精度。Lasso方法建立的模型性能指标为:R2=0.94,R2a=0.93,MRPE=4.51%,Rp=0.96;Elastic Net方法的性能指标为:R2=0.97,R2a=1,MRPE=3.25%,Rp=0.98。结果表明,Elastic Net所建立模型的性能指标优于Lasso方法,可以得到可解释性较强和预测精度较高的稀疏线性模型。  相似文献   

7.
采用显微激光诱导击穿光谱技术对低合金钢标准样品进行定量分析,空间分辨率达到20 μm,单脉冲检测极限(LoD)为0.10%。根据谱线强度和元素浓度的关系获得Mn元素的基本定标曲线,定标曲线的拟合度系数R2为0.97,采用去一交互验证法预测了样品中Mn元素的浓度,七个样品的平均预测误差为12.91%,去一交互验证均方根误差为0.11%。采用内标法时定标曲线的拟合度系数R2为0.99,七个样品的平均预测误差为7.25%,去一交互验证均方根误差为0.07%。实验结果表明显微激光诱导击穿光谱技术能有效应用于物质微区元素的高精度定性、定量分析。  相似文献   

8.
采用激光诱导击穿光谱(LIBS)技术定量分析缅甸翡翠中Fe元素的浓度。选择Fe元素的275.57 nm光谱线作为定量分析谱线,选取Si元素的288.17 nm光谱线作为内标谱线,选取12个缅甸翡翠样品作为研究对象,以其中9个样品绘制了传统定标法和内定标法的Fe元素定标曲线,并将定标曲线用于3个检验样品的Fe含量的实际预测。实验结果表明,采用传统定标方法时,定标样品光谱强度的相对标准偏差(RSD)在1.4%~8.3%之间,所建立的Fe元素浓度含量定标曲线的拟合相关系数R2为0.979,使用该方法建立的定标曲线对3个检验样品中Fe元素含量进行测定,最大相对误差为10.6%;而采用内定标法时,定标样品光谱强度的比值(IFe/ISi)的相对标准偏差(RSD)在0.9%~5.7%之间,Fe的拟合相关系数R2达到0.989,样品中Fe元素的测定相对误差均可降低到7%以下。结果证明,利用内定标法定量分析翡翠中Fe的含量比传统定标法相对误差更小,采用LIBS技术结合内定标法更适于缅甸翡翠样品中Fe元素定量分析。  相似文献   

9.
利用高光谱反射率光谱的特征波段构建光谱指数,建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型,分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据,利用小波分析法对原始光谱反射率曲线进行降噪处理,并对基于积分运算的光谱指数NAOC进行简化,获得了基于双波段简化运算的优化光谱指数。利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数,获得了以积分限(a,b)为横、纵坐标的相关系数二维矩阵,并绘制相关性等势图,得到相关系数最高的3个波段组合:R(641,790)(0.872 6),R(653,767)(0.871 7)和R(644,774)(0.871 6),计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值,按照2∶1的比例划分为建模集和验证集,建立了三种水稻叶片SPAD反演模型:偏最小二乘回归(PLSR)、支持向量机(SVM)和BP神经网络模型。结果显示:利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79,归一化均方根误差NRMSE则小于5.4%。其中BP神经网络相对于其他两种模型具有较高的拟合度,预测精度也相对较高,建模集R2=0.842 6,NRMSE=5.152 7%;验证集R2=0.857,NRMSE=4.829 9%。总体来看,基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的;对比分析3种模型反演结果发现,BP神经网络对水稻叶片SPAD的反演效果较好。该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。  相似文献   

10.
冬枣品质受其品种和生长环境等因素的影响,引起采后化转红指数不同,导致果实的颜色差异较大,从而影响其可溶性固形物(SSC)检测模型的分析精度。采用可见-近红外(Vis-NIR)光谱结合Norris-Williams平滑(NWS)、连续小波导数(CWD)、多元散射校正(MSC)、标准正态变量变换(SNV)和NWS-MSC五种光谱预处理方法构建不同颜色(红绿相间MJ,绿色GJ和红色RJ)冬枣SSC的偏最小二乘(PLS)定量分析模型,分别采用MJ,GJ,RJ,MJ-GJ和MJ-GJ-RJ五个样品集合建立冬枣SSC的定量分析模型,并采用由MJ-GJ-RJ三种颜色冬枣样品组成的测试集进行模型的评价;以不同建模样品集(校正集)的校正相关系数(Rc)和交互验证均方根误差(RMSECV)作为构建最优模型的评价指标;测试集的预测相关系数(Rp)和预测均方根误差(RMSEP)用于模型预测精度的评价。研究结果表明:分别采用MJ,GJ和RJ的独立样品集进行建模时,模型仅对具有相同颜色的冬枣样品的SSC实现了较好的预测;分别在MJ样品中加入GJ和GJ-RJ样品进行MJ-GJ和MJ-GJ-RJ两个混合样品集的定量模型的构建时,MJ-GJ模型对MJ和GJ样品的SSC具有较好的预测效果,其RMSECV,Rc,RMSEP,Rp分别为1.108,0.698,0.980,0.724和1.108,0.698,0.983,0.822,而对RJ样品的预测误差较大,模型的RMSECV,Rc,RMSEP,Rp为1.108,0.698,1.928,0.597;而MJ-GJ-RJ模型对三种颜色的冬枣SSC均有较好的预测结果:MJ-GJ-RJ模型对MJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,1.077,0.668;对GJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,0.881,0.861;对RJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,1.140,0.841;采用蒙特卡罗无信息变量消除(MCUVE)方法进一步对MJ-GJ-RJ样品集光谱的特征变量进行优选后,模型的RcRp分别由原来的0.796和0.864提高到0.884和0.922,模型的RMSECV和RMSEP分别由1.158和0.946减小到0.886和0.721,模型具有较好的分析精度。采用可见-近红外光谱对不同颜色冬枣的SSC进行分析时,当建模集样品与测试集样品颜色属性相似或选择性质相似的建模变量进行模型构建时,模型具有更好的通用性。  相似文献   

11.
以海南禁塑名录(第一批)中禁用不可降解塑料聚乙烯(PE)和乙烯-醋酸乙烯共聚物(EVA)为目标物,按不等质量梯度分别与聚己二酸/对苯二甲酸丁二醇酯(PBAT)和聚乳酸(PLA)等可生物降解聚合物熔融共混,进行复合物中PE和EVA的定性定量分析研究,以期为市场监督禁塑组分的违规添加提供数据。傅里叶变换红外光谱(FTIR)结合聚类分析,对PE-PBAT、 EVA-PBAT、 PE-PLA和EVA-PLA二元共混体系中的68个自制样品进行目标物鉴别及定量分析。结果表明,将所有光谱数据采用化学计量法分析研究,其聚类分析法可将样品分为3类,全波段下A=14,R2X(cum)=0.997,Q2(cum)=0.992。FTIR解析以峰形和峰位置筛选定性特征峰,以峰强变化筛选定量特征峰,其中PE-PBAT和EVA-PBAT体系有定性特征峰2 918和2 850 cm-1,定量特征峰2 918, 2 850, 1 714和727 cm-1; PE-PLA体系有定性特征峰2 918, 2 850和718 cm...  相似文献   

12.
The isothermal crystallization behavior and crystal structure of the polypropylene (PP) component in wood plastic composites (WPC) with respect to wood particle content and maleic anhydride-grafted polypropylene (MAHPP) compatibilizer were studied by means of polarized optical microscopy, scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. It was found that under the experimental conditions of this research, the speed of crystallization of PP was faster in WPC with MAHPP than in composites without MAHPP. This is ascribed to the difference in undercooling due to the change in the equilibrium melting temperatures (T 0 m ) of the PP component in WPC due to the addition of wood flour and MAHPP compatibilizer. T 0 m decreased with the increase of wood particle content, and it decreased more severely with the addition of wood flour than the addition of compatibilizer. The half-crystallization time was the smallest in PP/wood composites, intermediate in PP/wood/compatibilizer system, and the largest in pure PP under the same undercooling. The fast crystallization in PP/wood composites is ascribed to the heterogeneous nucleation effects of wood particles, which could be hindered by the MAHPP compatibilizers; this was verified by the higher fold surface free energy in WPC with compatibilizer than in WPC without compatibilizer.  相似文献   

13.
塑料产品除了在自然环境中可降解为微塑料污染环境之外,还会产生挥发性有机物,同样对环境造成巨大的污染和危害,因此对塑料挥发物的测量就显得尤为重要。目前传统挥发物的测量方法,如环境质谱法和色谱法等,存在测量过程复杂,成本高,无法实时测量等缺点,因而需要一种快速有效的针对塑料挥发物的测量方法。采用傅里叶变换红外光谱仪(Fourier transform infrared spectrometer,FTIR Spectrometer)结合怀特池对塑料挥发物进行测量,但是由于抽取式傅里叶变换红外光谱仪本身灵敏度有限,很难实现微量的塑料挥发物的测量,所以针对这一问题,尝试通过长光程气体池提高常规傅里叶变换红外光谱仪的灵敏度从而实现不同种类塑料挥发物的测量。选取了5种塑料产品,分别是低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),聚乙烯(PE),聚对苯二甲酸乙二醇酯(PET),聚丙烯(PP),利用光程长为20 m的怀特池结合傅里叶变换红外光谱仪实现了其中一些挥发物的光谱特征观测,实验观察到所有种类的塑料在2个光谱波数段具有明显的光谱特征,分别为800~850和1 050~1 150 cm-1。除聚对苯二甲酸乙二醇酯(PET)外,其余4种塑料挥发物在2 800~3 000 cm-1还存在明显的光谱吸收波段。进一步又研究了不同温度条件下塑料产生的挥发物,通过分析不同温度条件下的塑料产生的挥发物的红外光谱,发现除低密度聚乙烯(LDPE)在两种温度条件下光谱差异较大外,其他种类的塑料挥发物红外光谱差异较小。该研究提出了一种新型的基于长光程FTIR的塑料挥发物的测量方法,证实了其在塑料挥发物测量方面的有效性,这种方法具有测量成本低,可连续观测,实时在线等优点,为实现连续在线的塑料挥发物排放通量监测奠定了基础。  相似文献   

14.
杉木综纤维素和木质素的近红外光谱法测定   总被引:14,自引:2,他引:14  
用近红外光谱法对杉木中综纤维素和木质素含量进行了快速测定。用常规湿化学方法测定了48个杉木木材样品的综纤维素和木质素,用近红外光谱仪采集相应的光谱,进行二阶微分处理和平滑预处理后,用偏最小二乘法和完全交互验证方式建立相应预测模型。综纤维素校正模型和预测模型的相关系数分别为0.96和0.93;预测标准误差分别为0.39和0.50;木质素校正模型和预测模型的相关系数分别为0.99和0.90;预测标准误差分别为0.10和0.28。结果表明,近红外光谱法可以快速分析木材中综纤维素和木质素含量。  相似文献   

15.
将现代红外光谱分析技术与化学计量学方法相结合,建立利用红外光谱对短瓣金莲花药材的指标成分进行快速定量分析的方法。 以高效液相色谱法获得短瓣金莲花指标成分(荭草苷、牡荆苷)的含量作为参考数据,以傅里叶变换红外光谱技术获取其红外光谱图,在此基础上利用化学计量学方法将指标成分与红外光谱图数据关联,构建指标成分的快速预测模型。 以不同比例甲醇-水作为溶剂,采用室温浸提、加热回流、超声辅助工艺提取获得36个短瓣金莲花药材提取物。利用高效液相色谱法测试短瓣金莲花提取物的荭草苷和牡荆苷含量,并以傅里叶变换红外光谱仪辅以水平衰减全反射附件测试各样品的红外光谱图。分别选取29个提取物样品作为检验集,其余为校正集,采用TQ Analyst EZ Edition软件进行建模。以交叉验证相关系数(R2)和交叉验证误差均方根(RMSEC)为指标选择光谱预处理方法、定量分析方法和建模波段,用预测误差均方根(RMSEP)考核模型的预测效果。通过筛选得到优化的光谱预处理方法为标准正态分布校正(SNV)和二阶导数(13点平滑),定量分析方法为偏最小二乘(PLS)方法,荭草苷和牡荆苷的最佳波段分别为2 050~650和1 900~650 cm-1。以PLS法构建的荭草苷和牡荆苷模型的相关系数分别为0.919 8和0.970 8,模型预测结果的相对偏差分别在-2.0%~3.2%和-3.4%~4.7%之间。鉴于红外光谱技术所具有的测试迅速、微观宏观指纹特性、定性定量皆可分析、对环境无污染等特点,利用红外光谱法可对中药提取物的指标成分进行快速、准确、环保、高效的分析,为中药的质量控制提供了新的思路和解决方案。  相似文献   

16.
《Composite Interfaces》2013,20(7-9):847-867
Forced atmospheric (air) plasma treatment (FAPT) was applied to wood plastic composite (WPC) and continuous glass fiber reinforced plastic (FRP) surfaces to improve their adhesive bonding properties. The FRP was composed of oriented continuous E-glass fibers in a polypropylene matrix, while the WPC was fabricated using wood flour, polypropylene and additives. The FAPT was applied using two levels of discharge length projected from the discharge head (2.5″ and 1″) to ionize the air, oxidize the surfaces and improve wettability. The treatment was performed by passing the electrode over either surface, five or ten times. Surface characterization consisted of thermodynamic (surface energy determination), chemical (X-ray photoelectron spectroscopy), mechanical (shear strength) and microscopic (atomic force microscopy (AFM)) analysis. The results indicate that the acid–base component of the surface energy for both WPC and FRP after FAPT correlates with an increase in wettability. X-ray photoelectron spectroscopy was performed on wood regions and non-wood regions of the WPC surfaces; the oxygen concentration increased to a larger extent in the non-wood regions. Bonding shear strength measurements indicated increases of 50% after FAPT on WPC surfaces (2.5″ discharge length, 1 pass) and up to 200% for the hybrid WPC–FRP. Atomic force microscopy measurements using a silicon tip probe showed increases in adhesive force interactions up to 56% on WPC surfaces post-FAPT.  相似文献   

17.
杉木进行硅酸盐浸渍改性处理后,木材内部的改性剂相关元素含量与分布是衡量浸渍效果的重要指标,对改性杉木的各项物理力学性能有着至关重要的作用。以硅酸盐为浸渍改性剂,采用仿生呼吸法对杉木进行浸渍改性。研究了仿生呼吸法对硅酸盐改性杉木的密度、抗弯强度、抗压强度、三切面硬度和24 h吸水率影响,利用XPS和FTIR分析了杉木素材与改性材的化学成份与化学结构,并对硅酸盐改性剂在改性杉木中的分布深度与分布规律进行了探讨。结果表明:经过硅酸盐浸渍改性后,改性杉木平均密度大于0.721 g·cm-3,抗弯强度和抗压强度分别增大了170.19%和286.64%。改性杉木横切面、径切面和弦切面的硬度均有不同程度的提高。硅酸盐改性使杉木的24 h吸水率从91.17%±2.51%降至39.23%±1.62%,表明杉木的尺寸稳定性大幅度提高。相比于杉木素材,改性杉木木材的XPS全谱扫描中出现了Na元素和Si元素的吸收峰,窄扫谱图中出现了Si-O-C和Na-O化学结构。同时,改性杉木木材的FTIR谱图中出现了Si-O-Si的吸收峰,并且游离羟基含量减少,缔合羟基增多。XPS和FTIR分析都表明硅酸盐浸注到了杉木木材的孔隙中,且硅酸钠与杉木木材中羟基形成了化学键结合和氢键结合。这也是改性杉木的力学性能和耐水性能提高的重要原因。另外,通过XPS测试发现改性杉木木材沿横向从表面到30 mm处都出现了C,O,Na和Si元素,并且沿横向从表面到30 mm处,Si-O-C结合结构的吸收峰强度基本相同,说明从表面到中间部位,硅酸钠与杉木木材中的羟基都较均匀地形成了化学键。对各元素进行定量分析发现,改性杉木木材中C,O,Na和Si元素的相对含量从表面到中间部位(30 mm)差异较小,进一步表明改性剂能较好浸入杉木木材中间,并且均匀性较好。研究结果将为杉木浸渍改性效果提供数据支撑,并为优化改性工艺与方法、进一步提高改性杉木的物理力学性能提供依据。  相似文献   

18.
试验探讨了近红外反射光谱测定大豆制品中寡糖(蔗糖、棉籽糖及水苏糖)含量的可行性。2012年—2014年,从国内20个代表性大豆制品加工厂收集并筛选了160个大豆制品(包括去皮豆粕、膨化豆粕、发酵豆粕及膨化大豆各40个),同时为使样品集中的寡糖含量均匀分布,采用发酵豆粕和普通豆粕混合的方法,配制人工混合豆粕样品40个,使用偏最小二乘法,采用不同导数或去散射方法对光谱进行预处理并建立近红外定标模型。在光谱预处理中,针对不同寡糖,导数处理、多元散射校正及矢量归一化方法得到良好的预测效果。所建立的近红外定标模型的蔗糖、棉籽糖和水苏糖的定标决定系数(R2cal)分别为0.99,0.95和0.98,交互验证决定系数(R2cv)分别为0.98,0.94和0.97,交互验证RPDcv值分别为7.24,4.13和5.98,表明适用于大豆制品(除发酵豆粕外)中寡糖的日常检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号