首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Dipolar couplings contain information on internuclear distances as well as orientational constraints. To characterize the structure of the antimicrobial peptide gramicidin S when bound to model membranes, two rigid 4-CF3-phenylglycine labels were attached to the cyclic backbone such that they reflect the behavior of the entire peptide. By solid state 19F NMR we measured the homonuclear dipolar couplings of the two trifluoromethyl-groups in oriented membrane samples. Using the CPMG experiment, both the strong couplings within each CF3-group as well as the weak coupling between the two CF3-groups could be detected. An intra-CF3-group dipolar coupling of 86 Hz and a weak inter-group coupling of 20 Hz were obtained by lineshape simulation of the complex dipolar spectrum. It is thus possible to explore the large distance range provided by 19F-labels and to resolve weak dipolar couplings even in the presence of strong intra-CF3 couplings. We applied this approach to distinguish and assign two epimers of the labeled gramicidin S peptide on the basis of their distinct 19F dipolar coupling patterns.  相似文献   

2.
A new two-dimensional scheme is proposed for accurate measurements of high-resolution chemical shifts and heteronuclear dipolar couplings in NMR of aligned samples. Both the (1)H chemical shifts and the (1)H-(15)N dipolar couplings are evolved in the indirect dimension while the (15)N chemical shifts are detected. This heteronuclear correlation (HETCOR) spectroscopy yields high-resolution (1)H chemical shifts split by the (1)H-(15)N dipolar couplings in the indirect dimension and the (15)N chemical shifts in the observed dimension. The advantages of the HETCOR technique are illustrated for a static (15)N-acetyl-valine crystal sample and a (15)N-labeled helical peptide sample aligned in hydrated lipid bilayers.  相似文献   

3.
The periodic behavior of residual dipolar couplings (RDCs) arising from nucleic acid and protein secondary structures is shown to be more complex and information-rich than previously believed. We have developed a theoretical framework which allows the bond vector orientation of nucleic acids and the peptide plane orientations of protein secondary structures to be extracted from their Dipolar waves. In this article, we focus on utilizing "Dipolar waves" of peptides to extract structure information, and describe in more detail the fundamental principles of the relationship between the periodicities in structure and RDCs, the practical procedure to extract peptide plane orientation information from RDC data, and assessment of errors using Monte-Carlo simulations. We demonstrate the utility of our method for two model alpha-helices, one kinked and one curved, and as well as an irregular beta-strand.  相似文献   

4.
The secondary structure and topology of membrane proteins can be described by inspection of two-dimensional (1)H-(15)N dipolar coupling/(15)N chemical shift polarization inversion spin exchange at the magic angle spectra obtained from uniformly (15)N-labeled samples in oriented bilayers. The characteristic wheel-like patterns of resonances observed in these spectra reflect helical wheel projections of residues in both transmembrane and in-plane helices and hence provide direct indices of the secondary structure and topology of membrane proteins in phospholipid bilayers. We refer to these patterns as PISA (polarity index slant angle) wheels. The transmembrane helix of the M2 peptide corresponding to the pore-lining segment of the acetylcholine receptor and the membrane surface helix of the antibiotic peptide magainin are used as examples.  相似文献   

5.
The possibility of exciting and filtering various multipolar spin states in proton NMR like dipolar encoded longitudinal magnetization (LM), double-quantum (DQ) coherences, and dipolar order (DO) in strongly inhomogeneous static and radio-frequency magnetic fields is investigated. For this purpose pulse sequences which label and manipulate the multipolar spin states in a specific way were implemented on the NMR-MOUSE (mobile universal surface explorer). The performance of the pulse sequences was also tested in homogeneous fields on a solid-state high-field NMR spectrometer. The theoretical justification of these procedures was shown for a rigid two-spin 1/2 system coupled by dipolar interactions. Dipolar encoded longitudinal magnetization decay curves, double-quantum and dipolar-order buildup curves, as well as double-quantum decay curves were recorded with the NMR-MOUSE for natural rubber samples with different crosslink density. The possibility of using these multipolar spin states for investigations of strained elastomers by NMR-MOUSE is also shown. These curves give access to quantitative values of the ratio of the total residual dipolar couplings of the protons in the series of samples which are in good agreement with those measured in homogeneous fields.  相似文献   

6.
刪除肝癌2(DLC2),一种经常发现在原发性肝癌过低表达的肿瘤抑制基因,编码一种含有不育-α-基序多域蛋白质(DLC2-SAM).以前SAM域蛋白(DLC2-SAM)核磁共振结构显示此蛋白是由独特的四螺旋束组成,与其它已知SAM域结构截然不同.在该研究中,作者运用了15N-1H残留偶极偶合(RDC)作为附加约束连同NOE和TA-LOS数据进一步优化了DLC2-SAM的结构.由此所得的结构与没有15N-1H残留偶极偶合约束比较显示改善了结构的质量并且有较低的Q值.螺旋的取向,尤其是螺旋4,被残留偶极偶合数据所验证.RDC-优化的人类DLC2-SAM的结构与小鼠的DLC2-SAM很相像.DLC家庭独特的SAM域结构表明该域可能还具有没被发现的新功能.  相似文献   

7.
The main purpose of homonuclear Hartmann-Hahn or TOCSY experiments is the assignment of spin systems based on efficient coherence transfer via scalar couplings. In partially aligned samples, however, magnetization is also transferred via residual dipolar couplings (RDCs) and therefore through space correlations can be observed in COSY and TOCSY experiments that make the unambiguous assignment of covalently bound spins impossible. In this article, we show that the JESTER-1 multiple pulse sequence, originally designed for broadband heteronuclear isotropic Hartmann-Hahn transfer, efficiently suppresses the homonuclear dipolar coupling Hamiltonian. This suppression can be enhanced even further by variation of the supercycling scheme. The application of the resulting element in homonuclear TOCSY periods results in coherence transfer via J-couplings only. As a consequence, the assignment of scalar coupled spin systems is also possible in partially aligned samples. The bandwidth of coherence transfer for the JESTER-1-derived sequences is comparable to existing TOCSY multiple pulse sequences. Results are demonstrated in theory and experiment.  相似文献   

8.
Variable angle spinning (VAS) experiments can be used to measure long-range dipolar couplings and provide structural information about molecules in oriented media. We present a probe design for this type of experiment using a contactless resonator. In this circuit, RF power is transmitted wirelessly via coaxial capacitive coupling where the coupling efficiency is improved by replacing the ordinary sample coil with a double frequency resonator. Our probe constructed out of this design principle has shown favorable properties at variable angle conditions. Moreover, a switched angle spinning correlation experiment is performed to demonstrate the probe's capability to resolve dipolar couplings in strongly aligned molecules.  相似文献   

9.
Uniformly (15)N-labeled samples of membrane proteins with helices aligned parallel to the membrane surface give two-dimensional PISEMA spectra that are highly overlapped due to limited dispersions of (1)H-(15)N dipolar coupling and (15)N chemical shift frequencies. However, resolution is greatly improved in three-dimensional (1)H chemical shift/(1)H-(15)N dipolar coupling/(15)N chemical shift correlation spectra. The 23-residue antibiotic peptide magainin and a 54-residue polypeptide corresponding to the cytoplasmic domain of the HIV-1 accessory protein Vpu are used as examples. Both polypeptides consist almost entirely of alpha-helices, with their axes aligned parallel to the membrane surface. The measurement of three orientationally dependent frequencies for Val17 of magainin enabled the three-dimensional orientation of this helical peptide to be determined in the lipid bilayer.  相似文献   

10.
Sensitivity-enhanced versions of the IPAP, TROSY-anti-TROSY, and E.COSY experiments for measuring one-bond 15N-1HN couplings are presented. Together with the previously developed sensitivity-enhanced E.COSY-type HSQC experiment they comprise a suite of sensitivity-enhanced experiments that allows one to chose the optimal spectrum for accurate measurement of one-bond 15N-1HN residual dipolar couplings in proteins. Since one-bond 15N-1HN residual dipolar couplings play uniquely important roles in structural NMR, these additional methods provide further tools for improving structure determination of proteins and other biological macromolecules.  相似文献   

11.
12.
Measurement of dipolar couplings, chemical shift anisotropies, and quadrupole couplings in oriented media such as liquid crystals are of great importance for extraction of structural parameters in biological macromolecules. Here, we introduce a new technique, SAD-REDOR, that consists of recoupling heteronuclear dipolar couplings in molecules dissolved in a single-domain liquid crystal or other oriented medium through the combined use of magic-angle spinning and rotor-synchronized radiofrequency pulses. This application of the REDOR pulse sequence to oriented media offers several advantages such as selectivity over the type of coupling recovered and tunable scaling of the interaction. The effectiveness of the technique is demonstrated both theoretically and experimentally, using the recently developed polyacrylamide-stabilized Pf1 phage medium and 15N-labeled benzamide as the aligned molecule.  相似文献   

13.
We report a novel two-dimensional NMR pulse scheme for the 1H-detected observation of 2H in isotopically 13C, 2H-enriched carbohydrates. This scheme is used for the indirect observation of residual quadrupolar couplings in 13C, 2H-enriched methyl-beta-D-glucopyranoside weakly aligned in a dilute lyotropic liquid-crystalline medium comprising 20% (w/v) dihexanoyl-phosphatidylcholine/dimyristoyl-phosphatidylcholine (1:3 mol/mol) in D2O. The observed residual quadrupolar couplings are substantially larger than residual dipolar one-bond 13C-1H couplings under the same experimental conditions. These quadrupolar couplings are thus a useful alternative to dipolar couplings for the structural analysis of small molecules that align very weakly in dilute liquid-crystalline media. Moreover, since the quadrupolar coupling constant is very uniform throughout endocyclic deuterons of the carbohydrate, these data suggest that adoption of a single average value of this parameter in 2H relaxation studies on the glycan moieties of glycoproteins and glycopeptides is a valid assumption.  相似文献   

14.
The spectra of molecules oriented in liquid crystalline media are dominated by partially averaged dipolar couplings. In the 13C-1H HSQC, due to the inefficient hetero-nuclear dipolar decoupling in the indirect dimension, normally carried out by using a pi pulse, there is a considerable loss of resolution. Furthermore, in such strongly orienting media the 1H-1H and 13C-1H dipolar couplings leads to fast dephasing of transverse magnetization causing inefficient polarization transfer and hence the loss of sensitivity in the indirect dimension. In this study we have carried out 13C-1H HSQC experiment with efficient polarization transfer from 1H to 13C for molecules aligned in liquid crystalline media. The homonuclear dipolar decoupling using FFLG during the INEPT transfer delays and also during evolution period combined with the pi pulse heteronuclear decoupling in the t1 period has been applied. The studies showed a significant reduction in partially averaged dipolar couplings and thereby enhancement in the resolution and sensitivity in the indirect dimension. This has been demonstrated on pyridazine and pyrimidine oriented in the liquid crystal. The two closely resonating carbons in pyrimidine are better resolved in the present study compared to the earlier work [H.S. Vinay Deepak, Anu Joy, N. Suryaprakash, Determination of natural abundance 15N-1H and 13C-1H dipolar couplings of molecules in a strongly orienting media using two-dimensional inverse experiments, Magn. Reson. Chem. 44 (2006) 553-565].  相似文献   

15.
The measurement of dipolar couplings between nuclei is a convenient way of obtatining directly liquid crystalline ordering through NMR since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal. However, measurement of the dipolar coupling between a pair of selected nuclei is beset with problems that require special solutions. In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbour spins which can be extracted for several sites simultaneously by employing two-dimensional NMR techniques. The use of the method for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment are considered and their utility illustrated. A method for obtaining proton-proton dipolar couplings, by utilizing cross polarization from the dipolar reservoir, is also presented.  相似文献   

16.
Recent advancements in the utilization of residual dipolar couplings (RDCs) as a means of structure validation and elucidation have demonstrated the need for, not only a more user friendly, but also a more powerful RDC analysis tool. In this paper, we introduce a software package named REsidual Dipolar Coupling Analysis Tool (REDCAT) designed to address the above issues. REDCAT is a user-friendly program with its graphical-user-interface developed in Tcl/Tk, which is highly portable. Furthermore, the computational engine behind this GUI is written in C/C++ and its computational performance is therefore excellent. The modular implementation of REDCAT's algorithms, with separation of the computational engine from the graphical engine allows for flexible and easy command line interaction. This feature can be utilized for the design of automated data analysis sessions. Furthermore, this software package is portable to Linux clusters for high throughput applications. In addition to basic utilities to solve for order tensors and back calculate couplings from a given order tensor and proposed structure, a number of improved algorithms have been incorporated. These include the proper sampling of the Null-space (when the system of linear equations is under-determined), more sophisticated filters for invalid order-tensor identification, error analysis for the identification of the problematic measurements and simulation of the effects of dynamic averaging processes.  相似文献   

17.
13C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure 1H–13C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the 1H–13C hetero-nuclear dipolar interactions of 13C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of 13C3 labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples.  相似文献   

18.
Simple procedures are described for recording complementary in-phase and antiphaseJ-coupled NMR spectra. The sum and difference of these spectra contain only the upfield and the downfield components of a doublet, making it possible to measure theJsplitting directly from these combinations without an increase in resonance overlap relative to the decoupled spectrum. The approach is demonstrated for measurement of1JNHsplittings and2JHNC′splittings in oriented and isotropic ubiquitin. Dipolar couplings obtained from differences in the splittings measured in the oriented and isotropic phases are in excellent agreement with dipolar couplings obtained from direct measurement of the splitting or from a conventional E.COSY-type measurement.  相似文献   

19.
Polarization transfer under planar mixing conditions is a widely used tool in modern NMR-experiments. In the case of two coupled spins 1/2 or a chain of three or more spins 1/2 with only nearest neighbor couplings, it is only possible to transfer a single magnetization component (longitudinal magnetization in the principle axis system of the planar coupling tensors). However, if all couplings in a three-spin system are non-zero, it turns out that all magnetization components can be efficiently transferred even under strictly planar mixing conditions. In this article a detailed theoretical analysis is presented based on analytical transverse coherence transfer functions and on the underlying commutator algebra. In addition, transverse magnetization transfer is demonstrated experimentally. The results show that in highly coupled spin systems, as for example in the case of partially aligned samples with many residual dipolar couplings, special care has to be taken to avoid phase distortions if planar mixing steps are used.  相似文献   

20.
CH(alpha) residual dipolar couplings (Deltardc's) were measured for the oxidized cytochrome b562 from Escherichia coli as a result of its partial self-orientation in high magnetic fields due to the anisotropy of the overall magnetic susceptibility tensor. Both the low spin iron (III) heme and the four-helix bundle fold contribute to the magnetic anisotropy tensor. CH(alpha) Deltardc's, which span a larger range than the analogous NH values (already available in the literature) sample large space variations at variance with NH Deltardc's, which are largely isooriented within alpha helices. The whole structure is now significantly refined with the chemical shift index and CH(alpha) Deltardc's. The latter are particularly useful also in defining the molecular magnetic anisotropy parameters. It is shown here that the backbone folding can be conveniently and accurately determined using backbone restraints only, which include NOEs, hydrogen bonds, residual dipolar couplings, pseudocontact shifts, and chemical shift index. All these restraints are easily and quickly determined from the backbone assignment. The calculated backbone structure is comparable to that obtained by using also side chain restraint. Furthermore, the structure obtained with backbone only restraints is, in its whole, very similar to that obtained with the complete set of restraints. The paramagnetism based restraints are shown to be absolutely relevant, especially for Deltardc's.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号