首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Current Applied Physics》2001,1(2-3):169-173
We synthesized nearly monodisperse bare ZnSe nanocrystallites having luminescence which ranges in wavelength from 340 to 430 nm via nucleation due to supersaturation and growth followed by size selective precipitation. Bare ZnSe dots' outermost surface is passivated with organic HDA/TOP. In order to enhance the radiative emission from the semiconductor nanocrystals, we capped the bare ZnSe quantum dots with ZnS semiconductor materials of a wider band gap and 5% of lattice mismatch and produced highly luminescent core-shell (ZnSe)ZnS quantum dots. The core-shell (ZnSe)ZnS nanocrystals show 20 times or more as greatly enhanced luminescence quantum yields as those of bare ZnSe nanocrystals. The ZnSe bare dots and the (ZnSe)ZnS core-shell dots have cubic zinc blende structures as expected from the bulk structure. The observed shapes of bare ZnSe and core-shell (ZnSe)ZnS dots are nearly spherical or ellipsoidal with the aspect ratios of 1.2 and 1.4, respectively. They are not faceted.  相似文献   

2.
Microscale and larger semiconductor crystals have electronic and optical properties that depend on their bulk band structures. When these crystals are reduced into the nanoscale, they enter a new regime in which the electrical and optical properties are no longer influenced solely by their bulk band structures, but are influenced by the crystallite size and shape. In this paper, dimensional confinement and proximity phenomena are examined for colloidal semiconductor nanocrystals in several cases of practical importance. Specifically, we determine the effective binding potentials of selected quantum dots in aqueous environments in various colloidal semiconductor nanocrystals and correlate them with experimentally obtained absorption spectra. We also study fluorescence resonance energy transfer (FRET) between semiconductor crystals connected by short peptide chains as well as the shift in photoluminescence spectra of CdTe nanowires made from a chain of CdTe quantum dots.  相似文献   

3.
Russian Physics Journal - Results of fundamental and applied research in the field of creating photochromic core-shell type nanoparticles in which semiconductor nanocrystals – quantum dots...  相似文献   

4.
Safin  F. M.  Maslov  V. G. 《Optics and Spectroscopy》2020,128(6):729-732
Optics and Spectroscopy - We propose an approach to the analysis and interpretation of spectra of photoinduced circular dichroism (PICD) of semiconductor nanocrystals, in particular, quantum dots,...  相似文献   

5.
Linkov  P.  Samokhvalov  P.  Vokhmintsev  K.  Zvaigzne  M.  Krivenkov  V. A.  Nabiev  I. 《JETP Letters》2019,109(2):112-115
JETP Letters - In the last decade, colloidal semiconductor nanocrystals (quantum dots) have been not only studied fundamentally but also applied in photovoltaics, optoelectronics, and biomedicine....  相似文献   

6.
The main line of research in cancer treatment is the development of methods for early diagnosis and targeted drug delivery to cancer cells. Fluorescent semiconductor core/shell nanocrystals of quantum dots (e.g., CdSe/ZnS) conjugated with an anticancer drug, e.g., an acridine derivative, allow real-time tracking and control of the process of the drug delivery to tumors. However, linking of acridine derivatives to a quantum dot can be accompanied by quantum dot fluorescence quenching caused by electron transfer from the quantum dot to the organic molecule. In this work, it has been shown that the structure of the shell of the quantum dot plays the decisive role in the process of photoinduced charge transfer from the quantum dot to the acridine ligand, which is responsible for fluorescence quenching. It has been shown that multicomponent ZnS/CdS/ZnS shells of CdSe cores of quantum dots, which have a relatively small thickness, make it possible to significantly suppress a decrease in the quantum yield of fluorescence of quantum dots as compared to both the classical ZnS thin shell and superthick shells of the same composition. Thus, core/multicomponent shell CdSe/ZnS/CdS/ZnS quantum dots can be used as optimal fluorescent probes for the development of systems for diagnosis and treatment of cancer with the use of anticancer compounds based on acridine derivatives.  相似文献   

7.
We demonstrate a quantum-dot microcavity by coupling core-shell semiconductor nanocrystals to a fused-silica microsphere. We show that the composite microcavity can feature Q factors of the order of 10(8), providing a model system for investigating cavity QED and microlasers at the level of single quantum dots.  相似文献   

8.
Surface effects significantly influence the functionality of semiconductor nanocrystals. In the current work we present synthesis of ZnO quantum dots (QD) vis-a-vis symmetrically dispersed ZnO quantum dots embedded in SiO2 matrix and discussed their optical properties to understand the role of the surface effects. These nanomaterials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier transform infrared (FTIR), absorption (UV-visible) and photoluminescence (PL) spectroscopy. TEM studies confirm the formation of ZnO nanophosphors inside the SiO2 matrix in highly symmetrical manner. These symmetrically dispersed ZnO@SiO2 nanophosphors exhibited enhanced stable emission over uncoated sample and would permit the conjugation of the nanocrystals to biological entities after functionalization. Furthermore, the mechanism behind the formation of symmetrically dispersed ZnO quantum dots embedded in SiO2 matrix was discussed in detail.  相似文献   

9.
Fluorescent semiconductor nanocrystals in quantum confinement regime (quantum dots) present several well-known features which make them very useful tools for biological labeling purposes. Low photobleaching rates, high chemical stability and active surface allowing conjugation to living cells explain the success of this labeling procedure over the commonly used fluorescent dyes. In this paper we report the results obtained with highly fluorescent core–shell CdTe–CdS (diameter=3–7 nm) colloidal nanocrystals synthesized in aqueous medium and conjugated to glucose molecules. The conjugated nanocrystals were incubated with living yeast cells, in order to investigate their glucose up-take activity in real time, by confocal microscopy analysis. PACS 87.83.+a; 61.46.Hk; 81.07.Ta  相似文献   

10.
It is shown that colloidal semiconductor nanocrystals (quantum dots), which are promising fluorophores for multiphoton fluorescence microscopy, exhibit a two-photon absorption saturation effect at moderate powers (not exceeding 10 mW) of femtosecond pumping radiation. An analytical expression for the power of two-photon fluorescence of quantum dots as a function of the average pumping power is obtained. With this expression, the deviation of the found dependence from the quadratic law is explained by two factors, i.e., a large two-photon absorption cross section of quantum dots and their slow (compared to the typical pumping pulse-repetition period) relaxation to an unexcited state. Using an LSM 510 Carl Zeiss laser scanning microscope equipped with a Ti:Sa tunable femtosecond laser, a series of model experiments is performed to reveal the saturation effect in a solution of commercially available quantum dots. Good agreement is obtained between the measured dependence of the power of two-photon fluorescence on the average pump power and the theoretical calculation results. It is also experimentally demonstrated that, under fluorescence saturation conditions, the spatial resolution of the method of multiphoton fluorescence microscopy is lost; this effect is analyzed numerically.  相似文献   

11.
The negatively charged exciton in double-layer quantum dots   总被引:1,自引:0,他引:1  
The hyperangular equation for charged semiconductor complexes in a double-layer harmonic quantum dot was solved numerically by using the correlated hyperspherical harmonics as basis functions. By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton as a function of the radius of the quantum dot and the binding energy spectra of the ground state as a function of the radius of the quantum dot for a few values of the distance between the vertically coupled dots and the electron-to-hole mass ratio. Received 3 December 1999  相似文献   

12.
The coupling effects on the optical absorption spectrum of semiconductor quantum dots arestudied by using the standard model with valence and conduction band levels coupled todispersive quantum phonons of infinite modes. By deducing the analytical expression of theoptical absorption coefficient, the relationship between the measurable quantities and theintrinsic properties of the semiconductor quantum dot is established. By this expression,the peak position, the line shape, the linewidth, and the energy shift of the absorptionspectrum of semiconductor quantum dot can be calculated precisely for a wide range ofparameters. The role of coupling strength as a mechanism of absorption line asymmetry isinvestigated, and the calculation results clearly show the coupling-induced asymmetry inthe absorption line. This analytical approach is applied to GaAs quantum dot, and theresults are consistent with those of experiment observations.  相似文献   

13.
Indium(III) sulfide quantum dots were deposited in thin film form using both a conventional chemical bath deposition method and a sonochemical route. The developed routes allow deposition of cubic α-In2S3 nanocrystals in thin film form. The as-deposited films produced by the conventional and sonochemical approaches are highly nanocrystalline, with average crystal sizes of 2.5 and 2.0 nm correspondingly (as determined from the Scherrer formula), which increase to 4.1 nm upon annealing treatment, due to coalescence and crystal-growth processes. Refinement of the lattice-constant value in the case of as-deposited and annealed films was performed using linear regression analysis. Blue-shifted band-gap energy values of as-deposited films with respect to those corresponding to bulk specimen, accompanied with the red shift of absorption onset upon annealing, strongly indicate the quantum-dot behavior of the synthesized nanocrystals. The detected three-dimensional quantum-confinement effects in the synthesized nanocrystals were discussed in terms of the Brus model. On the basis of optical spectroscopic data, we estimated the Bohr's excitonic radius value in this semiconductor. Presented at the X-th Symposium on Suface Physics, Prague, Czech Republic, July 11–15, 2005.  相似文献   

14.
Optical spectroscopy in combination with wide field or confocal optical microscopy enables the investigation of single quantum objects such as organic molecules, II/VI semiconductor quantum dots and silicon nanocrystals. They all have fluctuations of luminescence intensities on time scales longer than μs in common. A comparison reveals that despite the large differences of the nature of the respective quantum objects, the intensity fluctuations are related to a slow ionisation process followed by a trapping of the photoejected charge in the non-conducing environment. Detailed aspects of the dynamics are controlled by the dielectric properties of the matrix.  相似文献   

15.
We have studied the optical properties of three-dimensionally confined photon states in a spherical microcavity (the photonic dots) resonantly excited by photons emitted from semiconductor nanocrystals (the quantum dots). Glass and polymer microspheres with sizes of 2<R<10 are characterized by spatially and temporally resolved micro-photoluminescence. The role of nanocrystal position and orientation is analyzed experimentally and theoretically. The emission spectra of single, bulk and hollow microspheres impregnated with CdSe quantum dots and quantum rods are investigated and the modification of the quantum dot radiative lifetime by the three-dimensional photon confinement is discussed. PACS 78.66.Hf; 61.46.+w; 42.60.Da  相似文献   

16.
Single-dot luminescence spectroscopy was used to study the emission linewidth of individual silicon nanocrystals from low temperatures up to room temperature. The results show a continuous line narrowing towards lower temperatures with a linewidth as sharp as 2 meV at 35 K. This value, clearly below the thermal broadening at this temperature, proves the atomiclike emission from silicon quantum dots subject to quantum confinement. The low temperature measurements further reveal a approximately 6 meV replica, whose origin is discussed. In addition, an approximately 60 meV TO-phonon replica was detected, which is only present in a fraction of the dots.  相似文献   

17.
ZnCuInS/ZnSe/ZnS量子点是一种无毒,无重金属的“绿色”半导体纳米材料。在研究中,制备了三种尺寸的ZnCuInS/ZnSe/ZnS核壳量子点,其直径分别为3.3,2.7,2.3 nm。通过测量不同尺寸的ZnCuInS/ZnSe/ZnS量子点的光致发光光谱,其发射峰值波长随尺寸的减小而蓝移。其吸收峰值波长和发射峰值波长分别是510,611(3.3 nm),483,583(2.7 nm)以及447,545 nm(2.3 nm)。ZnCuInS/ZnSe/ZnS量子点具有显著的尺寸依赖效应。ZnCuInS/ZnSe/ZnS量子点的斯托克斯位移分别为398 meV(3.3 nm),436 meV(2.7 nm)以及498 meV(2.3 nm),这样大的斯托克斯位移证明,ZnCuInS/ZnSe/ZnS量子点的发光机制与缺陷能级有关。同时,对直径为3.3 nm的ZnCuInS/ZnSe/ZnS量子点进行了温度依赖的光致发光光谱的测量,当温度为15~90 ℃时,该量子点发射峰值波长随温度的升高而红移,发光强度随温度的升高而降低,说明ZnCuInS/ZnSe/ZnS量子点是以导带能级与缺陷能级之间跃迁为主的复合发光。  相似文献   

18.
The energy gap between valence and conduction levels in colloidal semiconductor quantum dots can be tuned via the nanoparticle diameter when this is comparable to or less than the Bohr radius. In materials such as cadmium mercury telluride, which readily forms a single phase ternary alloy, this quantum confinement tuning can also be augmented by compositional tuning, which brings a further degree of freedom in the bandgap engineering. Here it is shown that compositional control of 2.3 nm diameter CdxHg(1?x)Te nanocrystals by exchange of Hg2+ in place of Cd2+ ions can be used to tune their optical properties across a technologically useful range, from 500 nm to almost 1200 nm. Data on composition‐dependent changes in the optical properties are provided, including bandgap, extinction coefficient, emission energy and spectral shape, Stokes shift, quantum efficiency, and radiative lifetimes as the exchange process occurs, which are highly relevant for those seeking to use these technologically important QD materials.  相似文献   

19.
Accurate determination of the spin Hamiltonian (SH) parameters, describing the electron paramagnetic resonance (EPR) spectra of paramagnetic impurity ions in wide band gap semiconductor nanocrystals, is essential for determining their localization and quantum properties. Here we present a procedure, based on publicly available software, for determining with higher accuracy the SH parameters of isolated Mn(2+) impurity ions in small cubic ZnS nanocrystals. The procedure, which can be applied to other cubic II-VI semiconductor nanocrystals as well, is based on the analysis of both low and high frequency EPR spectra with line shape simulation and fitting computing programs, which include the hyperfine forbidden transitions and line broadening effects. The difficulties, limitations and errors which can affect the accuracy in determining some of the SH parameters are also discussed.  相似文献   

20.
A light emitting diode has been developed on the basis of multilayer nanostructures in which CdSe/CdS semiconductor colloidal quantum dots serve as emitters. Their absorption, photo-, and electroluminescence spectra have been obtained. The strong influence of the size effect and the density of particles in the layer on the spectral and electrophysical characteristics of the diode has been demonstrated. It has been shown that the rates of the transfer of the exciton excitation energy from organic molecules to quantum dots increase strongly even at a small increase in the radius of the core (CdSe) of a particle and depend strongly on the thickness of the shell (CdS) of the particle. The optimal arrangement of the layer of quantum dots with respect to the p-n junction has been estimated from the experimental data. The results demonstrate that the spectral characteristics and rates of the electron processes in light-emitting devices based on quantum dots incorporated into an organic matrix can be efficiently controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号