首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlinear dynamics of elastic structures with two-mode interactions have been extensively studied in the literature. In this work, nonlinear forced response of elastic structures with essential inertial nonlinearities undergoing three-mode interactions is studied. More specifically, a three-beam structural system with attached mass is considered, and its multidegree-of-freedom discretized model for the structure undergoing planar motions is carefully studied. Linear modal characteristics of the structure with uniform beams depend on the length ratios of the three beams, the mass of the particle relative to that of the structure, and the location of the mass particle along the beams. The discretized model is studied for both external and parametric resonances for parameter combinations resulting in three-mode interactions. For the external excitation case, focus is on the system with 1:2:3 internal resonances with the external excitation frequency near the middle natural frequency. For the case of the structure with 1:2:5 internal resonances, the problem involving simultaneous principal parametric resonance of the middle mode and a combination resonance between the lowest and the highest modal frequencies is investigated. This case requires a higher-order approximation in the method of multiple time scales. For both cases, equilibrium and bifurcating solutions of the slow-flow equations are studied in detail. Many pitchfork, saddle-node, and Hopf bifurcations appear in the amplitude response of the three-beam structure, thus resulting in complex multimode responses in different parameter regions.  相似文献   

2.
Nonlinear free transversal oscillations of an orbiting string satellite system are analyzed. They are governed by two partial integro-differential equations with quadratic nonlinearities. The system is weakly nonlinear but in practice works in conditions of nearly simultaneous internal resonance. The ability of truncated models to capture specific phenomena is discussed. By limiting the investigation to the planar motion with a one prevailing component perturbed out-of-plane, two different models with three modes in primary and secondary resonance are adopted. For increasing levels of the system energy, fundamental and bifurcated paths of fixed points are obtained and their stability is investigated. Moreover, periodically amplitude modulated planar motions and their stability for out-of-plane disturbances are studied.  相似文献   

3.
In Part I of this work nonlinear coupling between torsional motion and both in-plane and out-of-plane flexural motion was examined for inextensional beams in the presence of a one-to-one internal resonance. Here the nonlinear response of the system considered in Part I is investigated for the case of an internal combination resonance involving modes associated with bending in two directions and torsion. The analysis presented is based on a consistent set of nonlinear differential equations which contain both curvature and inertia nonlinearities and account for torsional dynamics.  相似文献   

4.

Piezoelectric devices with integrated actuation and sensing capabilities are often used for the development of electromechanical systems. The present paper addresses experimentally the nonlinear dynamics of a fully integrated circular piezoelectric thin structure, with piezoelectric patches used for actuation and other for sensing. A phase-locked loop control system is used to measure the resonant periodic response of the system under harmonic forcing, in both its stable and unstable parts. The single-mode response around a symmetric resonance as well as the coupled response around an asymmetric resonance, involving two companion modes in 1:1 internal resonance, is accurately measured. For the latter, a particular location of the patches and additional signal processing is proposed to spatially discriminate the response of each companion mode. In addition to a hardening behavior associated with geometric nonlinearities of the plate, a softening behavior predominant at low actuation amplitudes is observed, resulting from the material piezoelectric nonlinearities.

  相似文献   

5.
结合震害调研及数值分析可知,结构最终失效可能仅由部分关键构件破坏引起,大部分构件仍处于弹性或小变形状态。因此为提高计算效率,在结构全过程分析中一致采用非线性单元建模并非必要,同时为准确考虑关键构件的非线性响应,本文提出一种新的数值子结构建模策略。进入弹塑性状态后,针对一般钢构件或钢筋混凝土构件采用动态替换子结构方法在单元或截面层次将其替换成非线性单元或非线性截面,并基于OpenSees平台开发了两类新单元予以实现;针对可能发生严重损伤的关键构件,采用隔离子结构方法将其隔离并建立精细化分析模型,考虑主、子结构间不同尺度边界耦合,并推导了切线刚度的传递关系,采用Client/Server技术在OpenSees平台开发了一类新的接口单元予以实现主、子结构之间的信息传递。为验证新开发单元的合理性,分别以钢及钢筋混凝土平面框架结构为例,采用纤维单元、动态替换子结构方法以及隔离子结构方法建模进行静、动力分析。计算结果表明,采用本文提出的动态替换子结构方法与常规建模方法的计算结果完全吻合并且可大幅缩短计算耗时,随着荷载水平的增大,结构中受到动态替换的构件比例急剧增大,计算效率提高程度略有降低,但仍远高于常规模型;采用本文提出的接口单元可准确传递主、子结构间的界面信息,为隔离数值子结构方法在结构弹塑性分析中的应用提供了基础。  相似文献   

6.
ABSTRACT

A finite element based method is developed for geometrically nonlinear dynamic analysis of spatial articulated structures; i.e., structures in which kinematic connections permit large relative displacement between components that undergo small elastic deformation. Vibration and static correction modes are used to account for linear elastic deformation of components. Kinematic constraints between components are used to define boundary conditions for vibration analysis and loads for static correction mode analysis. Constraint equations between flexible bodies are derived in a systematic way and a Lagrange multiplier formulation is used to generate the coupled large displacement-small deformation equations of motion. A lumped mass finite element structural analysis formulation is used to generate deformation modes. An intermediate-processor is used to calculate time-independent terms in the equations of motion and to generate input data for a large-scale dynamic analysis code that includes coupled effects of geometric nonlinearity and elastic deformation. Examples are presented and the effects of deformation mode selection on dynamic prediction are analyzed in Part II of the paper.  相似文献   

7.
In this present work, the nonlinear response of a single-link flexible Cartesian manipulator with payload subjected to a pulsating axial load is determined. The nonlinear temporal equation of motion is derived using D’Alembert’s principle and generalised Galerkin’s method. Due to large transverse deflection of the manipulator, the equation of motion contains cubic geometric and inertial types of nonlinearities along with linear and nonlinear parametric and forced excitation terms. Method of normal forms is used to determine the approximate solution and to study the dynamic stability and bifurcations of the system. These results are found to be in good agreement with those obtained by numerically solving the temporal equation of motion. Influences of amplitude of the base excitation, mass ratio, and amplitude of static and dynamic axial load on the steady state responses of the system are investigated for three different resonance conditions. For some specific conditions, the results obtained in this work are found to be in good agreement with the previously published experimental work. The results obtained in this work will find applications in the design of flexible Cartesian manipulators with payload.  相似文献   

8.
连续档导线运动方程包含平方和立方非线性项,倍频时会产生多模态耦合的复杂响应,因此研究连续档导线模态及共振的频率分布规律尤为重要.基于模态综合法获得了具有相等档距的连续档导线模态函数,基于动刚度理论得到了不同模态对应的频率理论公式,并应用有限元方法验证了模态及频率理论公式的准确性.研究了不同模态对应频率随几何参数的变化趋势,结果表明有相等档距的连续档导线的共振条件和单档导线有明显区别,连续档导线面内对称模态之间容易产生1:1共振,面内对称与反对称模态之间易产生1:2共振.本文研究内容可用来分析连续档导线内共振及其分岔行为.  相似文献   

9.
IntroductionThemodernanalysisandmethodsfornonlineardynamicshavegreatlypromotedthedevelopmentinnonlinearscience.TheseincludeL_Sreduce[1],singularitytheory[2 ],perturbationtechnique[3 ],Melnikovfunction[4 ],C_Lmethod[5 ]andcentermanifold[6],etc .However,thecouplingbe…  相似文献   

10.
11.
A general nonlinear theory for the dynamics of elastic anisotropic plates undergoing moderate-rotation vibrations is presented. The theory fully accounts for geometric nonlinearities (moderate rotations and displacements) by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvatures and strain-displacement expressions that contain the von Karman strains as a special case. The theory accounts for transverse shear deformations by using a third-order theory and for extensionality and changes in the configuration due to in-plane and transverse deformations. Five third-order nonlinear partial-differential equations of motion describing the extension-extension-bending-shear-shear vibrations of plates are obtained by an asymptotic analysis, which reveals that laminated plates display linear elastic and nonlinear geometric couplings among all motions.  相似文献   

12.
Dynamics of a Flexible Cantilever Beam Carrying a Moving Mass   总被引:6,自引:0,他引:6  
The motion of a flexible cantilever beam carrying a moving spring-mass system is investigated. The beam is assumed to be an Euler–Bernouli beam. The motion of the system is described by a set of two nonlinear coupled partial differential equations where the coupling terms have to be evaluated at the position of the mass. The nonlinearities arise due to the coupling between the mass and the beam. Due to the nonlinearities the system exhibits internal resonance which is investigated in this work. The equations of motion are solved numerically using the Rayleigh–Ritz method and an automatic ODE solver. An approximate solution using the perturbation method of multiple scales is also obtained.  相似文献   

13.
Xie  W. C.  Lee  H. P.  Lim  S. P. 《Nonlinear dynamics》2003,31(3):243-256
A nonlinear modal analysis approach based on the invariant manifoldmethod proposed earlier by Boivin et al. [10] is applied in this paperto perform the dynamic analysis of a micro switch. The micro switch ismodeled as a clamped-clamped microbeam subjected to a transverseelectrostatic force. Two kinds of nonlinearities are encountered in thenonlinear system: geometric nonlinearity of the microbeam associatedwith large deflection, and nonlinear coupling between two energydomains. Using Galerkin method, the nonlinear partial differentialgoverning equation is decoupled into a set of nonlinear ordinarydifferential equations. Based on the invariant manifold method, theassociated nonlinear modal shapes, and modal motion governing equationsare obtained. The equation of motion restricted to these manifolds,which provide the dynamics of the associated normal modes, are solved bythe approach of nonlinear normal forms. Nonlinearities and the pull-inphenomena are examined. The numerical results are compared with thoseobtained from the finite difference method. The estimate for the pull-involtage of the micro device is also presented.  相似文献   

14.
The dynamic stability and self-excited posteritical whirling of rotating transversally loaded shaft made of a standard material with elastic and viscous nonlinearities are analyzed in this paper using the theory of bifurcations as a mathematical tool. Partial differential equations of motion are derived under assumption that von Karman's nonlinearity is absent but geometric curvature nonlinearity is included. Galerkin's first-mode discretization procedure is then applied and the equations of motion are transformed to two third-order nonlinear equations that are analyzed using the theory of bifurcation. Condition for nontrivial equilibrium stability is determined and a bifurcating periodic solution of the second-order approximation is derived. The effects of dimensionless stress relaxation time and cubic elastic and viscous nonlinearities as well as the role of the transverse load are studied in the exemplary numerical calculations. A strongly stabilizing influence of the relaxation time is found that may eliminate self-excited vibration at all. Transition from super- to subcritical bifurcation is observed as a result of interaction between system nonlinearities and the transverse load.  相似文献   

15.
The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated. The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton's principle. A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method. A high-dimensional model of the buckled beam is derived, concerning nonlinear coupling. The incremental harmonic balance (IHB) method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve, and the Floquet theory is used to analyze the stability of the periodic solutions. Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited. Bifurcations including the saddle-node, Hopf, perioddoubling, and symmetry-breaking bifurcations are observed. Furthermore, quasi-periodic motion is observed by using the fourth-order Runge-Kutta method, which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited.  相似文献   

16.
The flexural vibration of a symmetrically laminated composite cantilever beam carrying a sliding mass under harmonic base excitations is investigated. An internally mounted oscillator constrained to move along the beam is employed in order to fulfill a multi-task that consists of both attenuating the beam vibrations in a resonance status and harvesting this residual energy as a complementary subtask. The set of nonlinear partial differential equations of motion derived by Hamilton’s principle are reduced and semi-analytically solved by the successive application of Galerkin’s and the multiple-scales perturbation methods. It is shown that by properly tuning the natural frequencies of the system, internal resonance condition can be achieved. Stability of fixed points and bifurcation of steady-state solutions are studied for internal and external resonances status. It results that transfer of energy or modal saturation phenomenon occurs between vibrational modes of the beam and the sliding mass motion through fulfilling an internal resonance condition. This study also reveals that absorbers can be successfully implemented inside structures without affecting their functionality and encumbering additional space but can also be designed to convert transverse vibrations into internal longitudinal oscillations exploitable in a straightforward manner to produce electrical energy.  相似文献   

17.
The fundamental and subharmonic resonances of a two degree-of-freedom oscillator with cubic stiffness nonlinearities and linear viscous damping are examined using a multiple-seales averaging analysis. The system is in a 1–1 internal resonance, i.e., it has two equal linearized eigenfrequencies, and it possesses nonlinear normal modes. For weak coupling stiffnesses the internal resonance gives rise to a Hamiltonian Pitchfork bifurcation of normal modes which in turn affects the topology of the fundamental and subharmonic resonance curves. It is shown that the number of resonance branches differs before and after the mode bifurcation, and that jump phenomena are possible between forced modes. Some of the steady state solutions were found to be very sensitive to damping: a whole branch of fundamental resonances was eliminated even for small amounts of viscous damping, and subharmonic steady state solutions were shifted by damping to higher frequencies. The analytical results are verified by a numerical integration of the equations of motion, and a discussion of the effects of the mode bifurcation on the dynamics of the system is given.  相似文献   

18.
This paper is first of the two papers dealing with analytical investigation of resonant multi-modal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables – which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations – are presented. A multi-dimensional Galerkin expansion of the solution of nonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effects of quadratic/cubic nonlinearities, approximate closed-form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation.  相似文献   

19.
An analytical model is proposed to study the nonlinear interactions between beam and cable dynamics in stayed-systems. The integro-differential problem, describing the in-plane motion of a simple cable-stayed beam, presents quadratic and cubic nonlinearities both in the cable equation and at the boundary conditions. Mainly studied are the effects of quadratic interactions, appearing at relatively low oscillation amplitude. To this end an analysis of the sensitivity of modal properties to parameter variations, in intervals of technical interest, has evidenced the occurrence of one-to-two and two-to-one internal resonances between global and local modes. The interactions between the resonant modes evidences two different sources of oscillation in cables, illustrated by simple 2dof discrete models.In the one-to-two global–local resonance, a novel mechanism is analyzed, by which cable undergoes large periodic and chaotic oscillations due to an energy transfer from the low-global to high-local frequencies.In two-to-one global–local resonance, the well-known parametric-induced cable oscillation in stayed-systems is correctly reinterpreted through the autoparametric resonance between a global and a local mode. Increasing the load the saturation of the global oscillations evidences the energy transfer from high-global to low-local frequencies, producing large cable oscillations. In both cases, the effects of detuning from internal and external resonance are presented.  相似文献   

20.
多自由度内共振系统非线性模态的分岔特性   总被引:5,自引:0,他引:5  
利用多尺度法构造了一个立方非线性1:3内共振系统的内共振非线性模态(NonlinearNormal Modes associated with internal resonance).研究表明,内共振非线性系统除存在单模态运动外还存在耦合模态运动.耦合内共振模态具有分岔特性.利用奇异性理论对模态分岔方程进行分析发现此类系统的模态存在叉形点分岔和滞后点分岔这两种典型的分岔模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号