首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential adsorption of water and organic vapor mixtures onto single-walled carbon nanotube (SWNT) bundles is studied experimentally and by grand canonical Monte Carlo (GCMC) simulation to elucidate the distinct interactions between select adsorbates and the nanoporous structure of SWNTs. Experimental adsorption isotherms on SWNT bundles for hexane, methyl ethyl ketone, cyclohexane, and toluene individually mixed in carrier gases that were nearly saturated with water vapor are compared with the GCMC-simulated isotherms for hexane, as a representative organic, on the external surface of the heterogeneous SWNT bundles. From the nearly perfect overlap between the experimental and simulated isotherms, it is concluded that until near saturation only the internal pore volume of pristine SWNT bundles fills with water. The adsorption of water vapor on the peripheral surface of the bundles remains insignificant, if not negligible, in comparison to the adsorption of water in the internal volume of the bundles. This is in contrast with the adsorption of pure hexane, which exhibits appreciable adsorption both inside the bundles and on their external surface. It is also suggested that during competitive adsorption, water molecules take precedence over small nonpolar and polar organic molecules for adsorption inside SWNTs and leave unoccupied the hydrophobic external surface of the bundles for other more compatible adsorbates.  相似文献   

2.
DNA-templated nanotube localization   总被引:4,自引:0,他引:4  
Carbon nanotubes are nanometer-scale materials with important properties, but their use in nanofabrication will require further development of methods for controlled positioning at well-defined locations on surfaces. We have devised an approach for specifically localizing single-walled carbon nanotubes (SWNTs) onto 1-pyrenemethylamine (PMA)-decorated lambda-DNA molecules aligned on Si surfaces. PMA is used as a bridging compound because its amine group is attracted electrostatically to the negatively charged phosphate backbone of DNA, while the pyrenyl group in PMA interacts with SWNT surfaces through pi-stacking forces. From a total of 60 atomic force microscopy images obtained on three different substrates, we determined that 63% of SWNTs observed on the surfaces were anchored along DNA, and these nanotubes covered approximately 5% of the total DNA length. DNA-templated nanopositioning offers intriguing possibilities for the bottom-up assembly of materials at the nanometer scale.  相似文献   

3.
We have examined the adsorption of DNA-wrapped single-walled carbon nanotubes (DNA-SWNTs) on hydrophobic, hydrophilic, and charged surfaces of alkylthiol self-assembled monolayers (SAMs) on gold. Our goal is to understand how DNA-SWNTs interact with surfaces of varying chemical functionality. These samples were characterized using reflection absorption FTIR (RAIRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. We have found that DNA-SWNTs preferentially adsorb to positively charged amine-terminated SAMs and to bare gold surfaces versus hydrophobic methyl-terminated or negatively charged carboxylic acid-terminated SAMs. Examination of the adsorption on gold of single-strand DNA (ssDNA) of the same sequence used to wrap the SWNTs suggests that the DNA wrapping plays a role in the adsorption behavior of DNA-SWNTs.  相似文献   

4.
We have designed a novel photodynamic therapy (PDT) agent using protein binding aptamer, photosensitizer, and single-walled carbon nanotube (SWNT). The PDT is based on covalently linking a photosensitizer with an aptamer then wrapping onto the surface of SWNTs, such that the photosensitizer can only be activated by light upon target binding. We have chosen the human alpha-thrombin aptamer and covalently linked it with Chlorin e6 (Ce6), which is a second generation photosensitizer. Our results showed that SWNTs are great quenchers to singlet oxygen generation (SOG). In the presence of its target, the binding of target thrombin will disturb the DNA interaction with the SWNTs and cause the DNA aptamer to fall off the SWNT surface, resulting in the restoration of SOG. This study validated the potential of our design as a novel PDT agent with regulation by target molecules, enhanced specificity, and efficacy of therapeutic function, which directs the development of photodynamic therapy to be safer and more selective.  相似文献   

5.
DNA imaged on a HOPG electrode surface by AFM with controlled potential   总被引:1,自引:0,他引:1  
Single-molecule AFM imaging of single-stranded and double-stranded DNA molecules self-assembled from solution onto a HOPG electrode surface is reported. The interaction of DNA with the hydrophobic surface induced DNA aggregation, overlapping, intra- and intermolecular interactions. Controlling the electrode potential and using the phase images as a control method, to confirm the correct topographical characterization, offers the possibility to enlarge the capability of AFM imaging of DNA immobilized onto conducting substrates, such as HOPG. The application of a potential of +300 mV (versus AgQRE) to the HOPG enhanced the robustness and stability of the adsorbed DNA molecules, increasing the electrostatic interaction between the positively charged electrode surface and the negatively charged DNA sugar-phosphate backbone.  相似文献   

6.
Understanding of electronic and optical features of single-walled carbon nanotubes (SWNTs) has been a central issue in science and nanotechnology of carbon nanotubes. We describe the detection of both the positive trion (positively charged exciton) and negative trion (negatively charged exciton) as a three-particle bound state in the SWNTs at room temperature by an in situ photoluminescence spectroelectrochemistry method for an isolated SWNT film cast on an ITO electrode. The electrochemical hole and electron dopings enable us to detect such trions on the SWNTs. The large energy difference between the singlet bright exciton and the negative and positive trions showing a tube diameter dependence is determined by both the exchange splitting energy and the trion binding energy. In contrast to conventional compound semiconductors, on the SWNTs, the negative trion has almost the same binding energy to the positive trion, which is attributed to nearly identical effective masses of the holes and electrons.  相似文献   

7.
Single-walled carbon nanotubes (SWNTs) have been chemically attached with high density onto a patterned substrate. To form the SWNT pattern, the substrate was treated with acid-labile group protected amine, and an amine prepattern was formed using a photolithographic process with a novel polymeric photoacid generator (PAG). The polymeric PAG contains a triphenylsulfonium salt on its backbone and was synthesized to obtain a PAG with enhanced efficiency and ease of spin-coating onto the amine-modified glass substrate. The SWNT monolayer pattern was then formed through the amidation reaction between the carboxylic acid groups of carboxylated SWNTs (ca-SWNTs) and the prepatterned amino groups. A high-density multilayer was fabricated via further repeated reaction between the carboxylic acid groups of the ca-SWNTs and the amino groups of the linker with the aid of a condensation agent. The formation of covalent amide bonding was confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Scanning electron microscopy and UV-vis-near-IR results show that the patterned SWNT films have uniform coverage with high surface density. Unlike previously reported patterned SWNT arrays, this ca-SWNT patterned layer has high surface density and excellent surface adhesion due to its direct chemical bonding to the substrate.  相似文献   

8.
We have theoretically investigated motions of single-walled carbon nanotubes (SWNTs) which are mounted on a flat substrate layer of SWNTs by tight-binding molecular dynamics simulations. One of the most interesting motions is the conversion of force and torque, where the force and torque acting initially on the mounted tube finally results in the lateral motion and rolling of the supporting tubes in the substrate. This motion is well understood in terms of the total energy surface of the SWNT/SWNT system. It is suggested that an undulation of the total energy surface plays a role as an atomic-scale gear tooth in the field of nanomechanics, in spite of the atomically smooth surface of SWNT.  相似文献   

9.
Electrostatic assembly of cationic nanoparticles onto the negatively charged backbone of double-stranded DNA has been shown to produce one-dimensional chains with potential use as nanoelectronic components. In this paper, micron long DNA templates stretched on aminosilane- and hexamethyldisilazane-modified silicon surfaces are used to assemble 3.5 nm gold nanoparticles passivated with cationic thiocholine. Atomic force microscopy is used to analyze the density and defects along the approximately 5 nm high structures, with comparison between positively charged and neutral surfaces. Low background adsorption of nanoparticles is facilitated by both these surface chemistries, while the neutral surface yields a more densely packed assembly.  相似文献   

10.
Using molecular dynamics simulations in an explicit aqueous solvent, we examine the binding of fluoride versus iodide to a spherical macromolecule with both hydrophobic and positively charged patches. Rationalizing our observations, we divide the ion association interaction into two mechanisms: (1) poorly solvated iodide ions are attracted to hydrophobic surface patches, while (2) the strongly solvated fluoride and to a minor extent also iodide bind via cation-anion interactions. Quantitatively, the binding affinities vary significantly with the accessibility of the charged groups as well as the surface potential; therefore, we expect the ion-macromolecule association to be modulated by the local surface characteristics of the (bio-)macromolecule. The observed cation-anion pairing preference is in excellent agreement with experimental data.  相似文献   

11.
The adsorption properties of a graft copolymer of poly(ethylene glycol) (PEG) with a polycationic backbone, namely, poly( l-lysine)- graft-poly(ethylene glycol) (PLL- g-PEG), onto nonpolar, hydrophobic PDMS surfaces from aqueous solution and the lubrication properties of the self-mated sliding contacts of PDMS surfaces modified with PLL- g-PEG have been investigated. Whereas PLL- g-PEG is spontaneously attracted to negatively charged surfaces as a result of the polycationic PLL backbone, the collective interaction of (CH 2) 4 hydrocarbon moieties on the lysine units in the PLL backbone with nonpolar, hydrophobic surfaces also enables the adsorption of PLL- g-PEG onto hydrophobic surfaces such as PDMS. The adsorption and lubrication properties of PLL- g-PEG have been investigated by varying the aqueous solution parameters, such as pH (2, 7, and 12) and KCl concentration (0, 0.01, 0.1, and 1 M) as well as the length of the PLL backbone of the copolymer (20 vs 375 kDa). In the absence of tribological stress, the adsorption of PLL- g-PEG onto PDMS surfaces was mainly governed by the KCl concentration, whereas the role of pH or the molecular weight of the copolymer was of relatively minor importance; for all pH values, the adsorbed mass decreased with increasing KCl concentration. Under tribological stress, however, a clear dependence of the lubrication properties of PLL- g-PEG on all of the studied parameters, including pH, KCl concentration, and backbone molecular weight, was observed. The adsorption strength of PLL- g-PEG on PDMS surfaces, rather than the adsorbed mass itself, appeared to be the most critical parameter in determining the lubrication properties.  相似文献   

12.
Room-temperature ionic liquids (RTILs) are intriguing solvents, which are recognized as “green” alternatives to volatile organics. Although RTILs are nonvolatile and can dissolve a wide range of charged, polar, and nonpolar organic and inorganic molecules, there remain substantial challenges in their use, not the least of which is the solvents’ high viscosity that leads to potential mass transfer limitations. In the course of this work, we discovered that the simple adsorption of the bacterial protease, proteinase K, onto single-walled carbon nanotubes (SWNTs) results in intrinsically high catalytic turnover. The high surface area and the nanoscopic dimensions of SWNTs offered high enzyme loading and low mass transfer resistance. Furthermore, the enzyme–SWNT conjugates displayed enhanced thermal stability in RTILs over the native suspended enzyme counterpart and allowed facile reuse. These enzyme–SWNT conjugates may therefore provide a way to overcome key operational limitations of RTIL systems.  相似文献   

13.
Density functional theory is employed to study Pd and Pd/Ni alloy monatomic chain-functionalized metallic single walled carbon nanotubes (SWNT(6,6)) and semiconducting SWNT(10,0), and their interactions with hydrogen molecules. The stable geometries and binding energies have been determined for both isolated chains and chains on SWNT surfaces. We found that continuous Pd and Pd/Ni chains form on SWNTs with geometries close to stable geometries in the isolated chains. Ni alloying improves stability of the chains owing to a higher binding energy to both Pd and C atoms. The physical properties of SWNTs are significantly modified by chain functionalization. SWNT(10,0) is transformed to metal by either Pd or alloy chains, or to a smaller band gap semiconductor, depending on the Pd binding site. From calculations for H(2) interactions with the optimized chain-SWNT systems, the adsorption energy per H atom is found to be about 2.6 times larger for Pd/Ni chain-functionalized SWNTs than for pure Pd chain-functionalized SWNTs. Band structure calculations show that the SWNT(10,0) reverts back to semiconductor and SWNT(6,6) has reduced density of states at the Fermi level upon H(2) adsorption. This result is consistent with the experimentally observed increase of electrical resistance when Pd-coated SWNTs are used as H(2) sensing materials. Finally, our results suggest that Pd/Ni-SWNT materials are potentially good H(2)-sensing materials.  相似文献   

14.
Spillover of hydrogen on nanostructured carbons is a phenomenon that is critical to understand in order to produce efficient hydrogen storage adsorbents for fuel cell applications. The spillover and interaction of atomic hydrogen with single-walled carbon nanotubes (SWNTs) is the focus of this combined theoretical and experimental work. To understand the spillover mechanism, very low occupancies (i.e., 1 and 2 H atoms adsorbed) on (5,0), (7,0), (9,0) zigzag (semiconducting) SWNTs and a (5,5) armchair (metallic) SWNT, with corresponding diameters of 3.9, 5.5, 7.0, and 6.8 A, were investigated. The adsorption binding energy of H atoms depends on H occupancy, tube diameter, and helicity (or chirality), as well as endohedral (interior) vs exohedral (exterior) binding. Exohedral binding energies are substantially higher than endohedral binding energies due to easier sp(2)-sp(3) transition in hybridization of carbon on exterior walls upon binding. A binding energy as low as -8.9 kcal/mol is obtained for 2H atoms on the exterior wall of a (5, 0) SWNT. The binding energies of H atoms on the metallic SWNT are significantly weaker (about 23 kcal/mol weaker) than that on the semiconductor SWNT, for both endohedral and exohedral adsorption. The binding energy is generally higher on SWNTs of larger diameters, while its dependence on H occupancy is relatively weak except at very low occupancies. Experimental results at 298 K and for pressures up to 10 MPa with a carbon-bridged composite material containing SWNTs demonstrate the presence of multiple adsorption sites based on desorption hysteresis for the spiltover H on SWNTs, and the experimental results were in qualitative agreement with the molecular orbital calculation results.  相似文献   

15.
Single walled carbon nanotubes (SWNTs) continue to demonstrate the potential of nanoscaled materials in a wide range of applications. The ability to modulate the mechanical or electrical properties of a material by varying the SWNT component may result in diverse "application tunable" materials. Similarly, biomaterials used in tissue engineering applications may benefit from these characteristics by varying electrical and mechanical properties to enhance or direct tissue specific regeneration. The interactions between SWNTs and cellular systems need to be optimized to integrate these highly hydrophobic nanoparticles within an aqueous environment while maintaining their unique properties. We assessed solubility, conductance, and cellular interactions between four different SWNT preparations (unrefined, refined, and SWNT with either albumin or human plasma adsorbed). Initial interactions between cells and SWNTs were assessed within a 3D environment using a red blood cell lysis model, with longer-term interactions assessing the effects on PC12 and 3T3 fibroblast function when cultured on SWNT-collagen composite hydrogels. After SWNT purification, the lytic effect on red blood cells (RBCs) is significantly reduced from 11% to 0.7%, indicating manufacturing contaminants play a significant role in undesirable cell interactions. Nanotubes with either human plasma or albumin physisorbed onto the nanotube surface were significantly more hydrophilic than either unrefined or refined preparations and displayed improved RBC interactions. Despite improved dispersion, purification, and adsorption of either plasma or albumin, SWNTs caused a significant reduction in conductance. Although the molecular interactions occurring at the cell membrane remain unclear, these investigations have identified two main factors contributing to membrane failure: manufacturing impurities and to a lesser extend the material's innate hydrophobicity. Although purification is a critical step to remove toxic manufacturing contaminants, care must be taken to ensure improved aqueous dispersion does not compromise desirable mechanical and electrical attributes.  相似文献   

16.
In this paper the adsorption of a monoclonal antibody IgG-1 isotype against HBsAg onto positively and negatively charged polystyrene beads has been studied. To determine the role played by electrostatic forces in the adsorption process different pH values were used. It was confirmed that the affinity of adsorption isotherms depends on the electrostatic interaction between protein and polymer surface. The maximum adsorption amount is located around the i.e.p. of the dissolved protein, and decreases markedly as pH moves away. Thus, the major driving force for adsorption of monoclonal antibodies on polystyrene beads comes from the hydrophobic interaction between the antibody molecules and the adsorbent surface. Desorption of preadsorbed IgG molecules by increasing ionic strength has shown that the positively charged polystyrene is also more hydrophobic in character than the negatively charged one. Finally, electrokinetic experiments have determined that the electric double layer (e.d.l.) of monoclonal antibody changes as the consequence of adsorbing on charged polymer surfaces.  相似文献   

17.
采用分子动力学方法模拟了水溶液中Ⅱ型疏水蛋白HFBI在单壁碳纳米管(SWNTs)表面的吸附过程, 考察了3种不同的HFBI初始取向, 并计算了结合自由能, 从累计240 ns的模拟轨迹中得到了不同的吸附结构. 结果表明, 当HFBI完全通过疏水面与SWNTs作用时, 其结合自由能最有利吸附, 且吸附最稳定. 另外, 由于HFBI含有4个二硫键, 因此吸附过程几乎不改变其二级结构.  相似文献   

18.
We developed chitosan based surfactant polymers that could be used to modify the surface of existing biomaterials in order to improve their blood compatibility. These polymers consist of a chitosan backbone, PEG side chains to repel non-specific protein adsorption, and hexanal side chains to facilitate adsorption and proper orientation onto a hydrophobic substrate via hydrophobic interactions. Since chitosan is a polycationic polymer, and it is thrombogenic, the surface charge was altered to determine the role of this charge in the hemocompatibility of chitosan. Charge had a notable effect on platelet adhesion. The platelet adhesion was greatest on the positively charged surface, and decreased by almost 50% with the neutralization of this charge. A chitosan surface containing the negatively charged SO(3)(-) exhibited the fewest number of adherent platelets of all surfaces tested. Coagulation activation was not altered by the neutralization of the positive charge, but a marked increase of approximately 5-6 min in the plasma recalcification time (PRT) was displayed with the addition of the negatively charged species. Polyethylene (PE) surfaces were modified with the chitosan surfactant resulting in a significant improvement in blood compatibility, which correlated to the increasing PEG content within the polymer. Adsorption of the chitosan surfactants onto PE resulted in approximately an 85-96% decrease in the number of adherent platelets. The surfactant polymers also reduced surface induced coagulation activation, which was indicated by the PEG density dependent increase in PRTs. These results indicate that surface modification with our chitosan based surfactant polymers successfully improves blood compatibility. Moreover, the inclusion of either negatively charged SO(3)(-) groups or a high density of large water-soluble PEG side chains produces a surface that may be suitable for cardiovascular applications.  相似文献   

19.
We consider within a modified Poisson-Boltzmann theory an electrolyte, with different mixtures of NaCl and NaI, near uncharged and charged solid hydrophobic surfaces. The parametrized potentials of mean force acting on Na+, Cl-, and I- near an uncharged self-assembled monolayer were deduced from molecular simulations with polarizable force fields. We study what happens when the surface presents negative charges. At moderately charged surfaces, we observe strong co-ion adsorption and clear specific ion effects at biological concentrations. At high surface charge densities, the co-ions are pushed away from the interface. We predict that Cl- ions can also be excluded from the surface by increasing the concentration of NaI. This ion competition effect (I- versus Cl-) may be relevant for ion-specific partitioning in multiphase systems where polarizable ions accumulate in phases with large surface areas.  相似文献   

20.
The adsorption and assembly of B18 peptide on various solid surfaces were studied by reflectometry techniques and atomic force microscopy. B18 is the minimal membrane binding and fusogenic motif of the sea urchin protein bindin, which mediates the fertilization process. Silicon substrates were modified to obtain hydrophilic charged surfaces (oxide layer and polyelectrolyte multilayers) and hydrophobic surfaces (octadecyltrichlorosilane). B18 does not adsorb on hydrophilic positively charged surfaces, which was attributed to electrostatic repulsion since the peptide is positively charged. In contrast, the peptide irreversibly adsorbs on negatively charged hydrophilic as well as on hydrophobic surfaces. B18 showed higher affinity for hydrophobic surfaces than for hydrophilic negatively charged surfaces, which must be due to the presence of hydrophobic side chains at both ends of the molecule. Atomic force microscopy provided the indication that lateral diffusion on the surface affects the adsorption process of B18 on hydrophobic surfaces. The adsorption of the peptide on negatively charged surfaces was characterized by the formation of globular clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号